Category: Airspy

Airspy HF+ Official Specifications Released

Last month we saw news of the Airspy HF+, which is a yet to be released software defined radio with a focus on high performance reception in the HF bands. Some preliminary specs were unofficially released back then on the Airspy Yahoo forums.

Now over on the Airspy website, the official specifications have been released and they are pasted below. The specs suggest that the Airspy HF+ will have extremely high performance when it comes to strong signal handling. This means that there should be little to no chance of overloading, and thus no intermodulation or spurs.

The goal pricing is to be below $200 USD. If this is true, then it will compete heavily with the $249.95 USD ColibriNANO which is another new HF specialty radio with similar specs.

The Airspy team write:

Airspy HF+ is a paradigm shift in high performance HF radio design. It is a joint effort between Airspy, Itead Studio and some famous chip maker to build a state of the art SDR for HF and VHF bands.

Like most high-end HF receivers, the HF+ uses very high dynamic range ADC’s and front-ends. But unlike the current offerings in the market, it also brings more frequency agility by using high performance passive mixers with an excellent overtone rejection structure.
Both the architecture and level of integration achieved in this design allow us to bring top performance reception at a very affordable price.

HF Tuner

Airspy HF+ achieves excellent HF performance by mean of a low-loss band filter, a high linearity LNA, a high linearity tunable RF filter, an over-tone-rejection (OTR) mixer that rejects up to the 21st harmonic and an IF filter.
The 6 dB-stepped AGC gain is fully controlled by the software running onto the DSP which optimizes the gain distribution in real time for optimal sensitivity and linearity. OTR is a key issue in wide band HF receivers because of the large input signal bandwidth. The output of the IF-filter is then digitalized by the IF ADC for further signal processing.

VHF Tuners

Excellent VHF performance is also achieved by using optimized signal paths composed by band filters, high linearity LNAs with a stepped AGC and an over-tone-rejection mixer and IF filters optimized for their respective bands.
The amplifier gain is switchable in 3 dB-steps and is fully controlled by the AGC processing running onto the DSP. The RF signal is converted to baseband by a high linearity passive mixer with overtone-rejection structure. The low-IF signal is then converted into the digital domain by the IF ADC for further digital signal processing.

IF Digitalization

The IF digital to analog converter has a 4th order multi-bit topology; it features very high dynamic range and linearity. The IF-ADC sampling frequency is determined by a control algorithm running on the DSP. This advanced technique changes the sampling frequency depending on the tuning frequency with the goal of avoiding the disturbances generated by the switching discrete-time sections of the IF-ADC.

Digital Down Converter

Once the IF signal is digitalized, the high sample rate I/Q stream is then frequency translated and processed with cascaded CIC and FIR decimation stages. After every stage, the sample rate is reduced and more the resolution is increased. The final signal at the output has 18bit resolution and the alias rejection performance is 108 dBc. The data is then scaled to 16bit and sent to the Micro-Controller for streaming over USB.

Use it over the network!

Connect as many SDR applications as needed to the HF+, over the Internet or in your own local network with near zero latency thanks to the new SPY Server software.
This setup basically brings all the flexibility of Web based SDRs while still benefiting from the full power of desktop applications. The IQ data is processed in the server with state of the art DSP and only the required chunk of spectrum is sent over the network. What is sent is the actual IQ signal, not compressed audio. This means you can use all your favorite plugins to process the IF, eliminate noise and perform heavy lifting of the signals as you are used to do with locally connected SDR’s.
We have a tradition of building multi-tools, so we made sure the SPY Server runs on 32/64bit Windows and Linux on Intel and ARM processors without any compromises. Low cost Raspberry Pi 3 and Odroid boards are in the party.

Technical specifications

  • HF coverage between DC .. 31 MHz
  • VHF coverage between 60 .. 260 MHz
  • -138 dBm MDS at 500Hz bandwidth in HF
  • -142 dBm MDS at 500Hz bandwidth in VHF
  • +26 dBm IIP3 on HF at maximum gain
  • +13 dBm IIP3 on VHF at maximum gain
  • 110 dB dynamic range in HF
  • 95 dB dynamic range in VHF
  • 120 dB Image Rejection
  • Very low phase noise PLL (-110 dBc/Hz @ 1kHz separation @ 100 MHz)
  • +10 dBm Maximum RF input
  • No Silicon RF switch to introduce IMD in the HF path
  • Routable RF inputs
  • Wide Band RF filter bank
  • Tracking RF filters
  • Sharp IF filters
  • Smart AGC with real time optimization of the gain distribution
  • All RF inputs are matched to 50 ohms
  • 2 x High Dynamic Range Sigma Delta ADCs @ up to 36 MSPS
  • 600 kHz alias and image free output
  • 18 bit Digital Down Converter (DDC)
  • 0.5 ppm high precision, low phase noise clock
  • 4 x Programmable GPIO’s
  • No drivers required! 100% Plug-and-play on Windows Vista, Seven, 8, 8.1 and 10
  • Industrial Operating Temperature: -45°C to 85°C

Typical Applications

  • High Performance Networked HF Radio
  • Ham Radio (HF + 2m)
  • Short Wave Listening (SWL)
  • AM DX
  • FM DX
  • VHF-L TV DX
  • Remote Telemetry Radio Receiver
  • Low Bands IoT

Supported platforms

  • Windows Vista, 7, 8, 8.1 and 10 (For Windows XP, please contact us)
  • Linux
  • *BSD
  • OSX

Minimum hardware requirements

  • 1GHz Pentium or ARM
  • 1GB of RAM (to run your own OS, HF+ barely needs 1MB of memory)
  • High speed USB 2.0 controller
The Airspy HF+ Architecture
The Airspy HF+ Architecture

ColibriNANO: A New 10 kHz to 500 MHz Direct Sampling Receiver

The ColibriNANO is a new software defined radio that is currently available for pre-order and is expected to be ready for delivery by the end of April 2017. The specs show that it is a direct sampling receiver (no tuner), which can receive from 10 kHz to 500 MHz in oversampling mode, and from 10 kHz to 55 MHz in standard mode. It uses a 14 Bit ADC which provides up to 110 dB’s of blocking dynamic range, and can run with a sampling rate of up to 3 MHz. The press release given to us reads:

New ColibriNANO SDR USB Receiver with a 14-bit ADC .01-500MHz

Kirkland, WA, USA —March 27 th , 2017 –

Vasily Vasiliev, Chief Hardware Engineer of Expert Electronics is pleased to announce availability of new ColibriNANO 0.01-500 MHz receiver in late April, 2017.

Notable features include the blocking dynamic range (BDR) ~110dB, native .01-55 MHz coverage with up to 500 MHz in oversampling mode, low pass filter (LPF) <60 MHz, full compatibility with HDSDR, legacy SDR#, and ExpertSDR2 software.

Supported platforms are Windows® XP-10, Linux and Web-client for HTML5 browsers.

No existing USB SDR receivers combine high sensitivity and broad dynamic range. Remote operation (TCP/IP) interface is built-in and offers plug-and- play solutions for Amateur, Commercial and Government applications.

For further information call (800)977-0448 or email [email protected]

https://www.nsiradio.com

Currently we see that the ColibriNANO is selling for $249.95 USD on the nsiradio.com website. We’ve also seen the following description on the sunsdr.eu website:

With the new ColibriNANO you will be able to enjoy LF, MW and Shortwave listening in many different ways. For example you can record the entire medium wave band using 1.5 MHz sampling rate, decode CW using CW skimmer, remote control the ColibriNANO by plugging it into our RPI server. There are an endless range of applications for this small SDR. All this in a tiny USB stick!

The ColibriNANO features a Texas Instruments ADS4145 14 bit direct sampling ADC and a built in low 55 MHz pass filter that can be bypassed to receive signals up to 500 MHz (external filters  like the our 2m filtered preamp recommended).

CW skimmer and Skimmer With the external ExtIO library the ColibriNANO can be used with third party software like HDSDR etc.

This is not a cheap USB dongle found on Ebay, this high quality SDR receiver is developed by Expert Electronics and features a sturdy aluminium chassis, ESD protection, USB 2.0 interface and a quality SMA antenna connector.

Best of all, the ColibriNANO travels in your pocket and only needs your computer and an antenna! Its the ultimate portable SDR receiver!

Software support

  • ExpertSDR2
  • CW Skimmer
  • Skimmer Server
  • Third party software using ExtIO library

Specifications

  • Receiving bandwidth: 0.1 – 55 MHz
  • Oversampling receiving: 0.1 – 500 MHz
  • Blocking Dynamic Range (BDR): 110 dB
  • Sensitivity: 0.05 uV at 20M band, preamp = 0
  • IMD3 Dynamic Range: 95 dB
  • ADC resolution: 14-bit @ 122.88 MHz
  • Sample rate: 48, 96, 192, 384, 768 kHz and 1.5, 3.0 MHz
  • IQ resolution: 24 bit (16 bit at 1.5 and 3 MHz sample rates)
  • RF Input: (SMA connector, up to 15kV ESD protection)
  • Preamp range: from 31.5 up to +6 dB with 0.5 dB steps
  • Operating temperature: -10°C to 60°C
  • Dimensions: 90х25х17mm
  • Weight: 0.043kg

It looks like that this receiver may compete somewhat with the also upcoming Airspy HF+. The Airspy HF+ claims similar specs including a frequency range of 0 – 270 MHz, 14 Bit ADC and 108 dB blocking dynamic range. But the target price for the HF+ is below $200 USD.

Airspy HF+ Official Specifications Released

Last month we saw news of the Airspy HF+, which is a yet to be released software defined radio with a focus on high performance reception in the HF bands. Some preliminary specs were unofficially released back then on the Airspy Yahoo forums.

Now over on the Airspy website, the official specifications have been released and they are pasted below. The specs suggest that the Airspy HF+ will have extremely high performance when it comes to strong signal handling. This means that there should be little to no chance of overloading, and thus no intermodulation or spurs.

The goal pricing is to be below $200 USD. If this is true, then it will compete heavily with the $249.95 USD ColibriNANO which is another new HF specialty radio with similar specs.

The Airspy team write:

Airspy HF+ is a paradigm shift in high performance HF radio design. It is a joint effort between Airspy, Itead Studio and some famous chip maker to build a state of the art SDR for HF and VHF bands.

Like most high-end HF receivers, the HF+ uses very high dynamic range ADC’s and front-ends. But unlike the current offerings in the market, it also brings more frequency agility by using high performance passive mixers with an excellent overtone rejection structure.
Both the architecture and level of integration achieved in this design allow us to bring top performance reception at a very affordable price.

HF Tuner

Airspy HF+ achieves excellent HF performance by mean of a low-loss band filter, a high linearity LNA, a high linearity tunable RF filter, an over-tone-rejection (OTR) mixer that rejects up to the 21st harmonic and an IF filter.
The 6 dB-stepped AGC gain is fully controlled by the software running onto the DSP which optimizes the gain distribution in real time for optimal sensitivity and linearity. OTR is a key issue in wide band HF receivers because of the large input signal bandwidth. The output of the IF-filter is then digitalized by the IF ADC for further signal processing.

VHF Tuners

Excellent VHF performance is also achieved by using optimized signal paths composed by band filters, high linearity LNAs with a stepped AGC and an over-tone-rejection mixer and IF filters optimized for their respective bands.
The amplifier gain is switchable in 3 dB-steps and is fully controlled by the AGC processing running onto the DSP. The RF signal is converted to baseband by a high linearity passive mixer with overtone-rejection structure. The low-IF signal is then converted into the digital domain by the IF ADC for further digital signal processing.

IF Digitalization

The IF digital to analog converter has a 4th order multi-bit topology; it features very high dynamic range and linearity. The IF-ADC sampling frequency is determined by a control algorithm running on the DSP. This advanced technique changes the sampling frequency depending on the tuning frequency with the goal of avoiding the disturbances generated by the switching discrete-time sections of the IF-ADC.

Digital Down Converter

Once the IF signal is digitalized, the high sample rate I/Q stream is then frequency translated and processed with cascaded CIC and FIR decimation stages. After every stage, the sample rate is reduced and more the resolution is increased. The final signal at the output has 18bit resolution and the alias rejection performance is 108 dBc. The data is then scaled to 16bit and sent to the Micro-Controller for streaming over USB.

Use it over the network!

Connect as many SDR applications as needed to the HF+, over the Internet or in your own local network with near zero latency thanks to the new SPY Server software.
This setup basically brings all the flexibility of Web based SDRs while still benefiting from the full power of desktop applications. The IQ data is processed in the server with state of the art DSP and only the required chunk of spectrum is sent over the network. What is sent is the actual IQ signal, not compressed audio. This means you can use all your favorite plugins to process the IF, eliminate noise and perform heavy lifting of the signals as you are used to do with locally connected SDR’s.
We have a tradition of building multi-tools, so we made sure the SPY Server runs on 32/64bit Windows and Linux on Intel and ARM processors without any compromises. Low cost Raspberry Pi 3 and Odroid boards are in the party.

Technical specifications

  • HF coverage between DC .. 31 MHz
  • VHF coverage between 60 .. 260 MHz
  • -138 dBm MDS at 500Hz bandwidth in HF
  • -142 dBm MDS at 500Hz bandwidth in VHF
  • +26 dBm IIP3 on HF at maximum gain
  • +13 dBm IIP3 on VHF at maximum gain
  • 110 dB dynamic range in HF
  • 95 dB dynamic range in VHF
  • 120 dB Image Rejection
  • Very low phase noise PLL (-110 dBc/Hz @ 1kHz separation @ 100 MHz)
  • +10 dBm Maximum RF input
  • No Silicon RF switch to introduce IMD in the HF path
  • Routable RF inputs
  • Wide Band RF filter bank
  • Tracking RF filters
  • Sharp IF filters
  • Smart AGC with real time optimization of the gain distribution
  • All RF inputs are matched to 50 ohms
  • 2 x High Dynamic Range Sigma Delta ADCs @ up to 36 MSPS
  • 600 kHz alias and image free output
  • 18 bit Digital Down Converter (DDC)
  • 0.5 ppm high precision, low phase noise clock
  • 4 x Programmable GPIO’s
  • No drivers required! 100% Plug-and-play on Windows Vista, Seven, 8, 8.1 and 10
  • Industrial Operating Temperature: -45°C to 85°C

Typical Applications

  • High Performance Networked HF Radio
  • Ham Radio (HF + 2m)
  • Short Wave Listening (SWL)
  • AM DX
  • FM DX
  • VHF-L TV DX
  • Remote Telemetry Radio Receiver
  • Low Bands IoT

Supported platforms

  • Windows Vista, 7, 8, 8.1 and 10 (For Windows XP, please contact us)
  • Linux
  • *BSD
  • OSX

Minimum hardware requirements

  • 1GHz Pentium or ARM
  • 1GB of RAM (to run your own OS, HF+ barely needs 1MB of memory)
  • High speed USB 2.0 controller
The Airspy HF+ Architecture
The Airspy HF+ Architecture

ColibriNANO: A New 10 kHz to 500 MHz Direct Sampling Receiver

The ColibriNANO is a new software defined radio that is currently available for pre-order and is expected to be ready for delivery by the end of April 2017. The specs show that it is a direct sampling receiver (no tuner), which can receive from 10 kHz to 500 MHz in oversampling mode, and from 10 kHz to 55 MHz in standard mode. It uses a 14 Bit ADC which provides up to 110 dB’s of blocking dynamic range, and can run with a sampling rate of up to 3 MHz. The press release given to us reads:

New ColibriNANO SDR USB Receiver with a 14-bit ADC .01-500MHz

Kirkland, WA, USA —March 27 th , 2017 –

Vasily Vasiliev, Chief Hardware Engineer of Expert Electronics is pleased to announce availability of new ColibriNANO 0.01-500 MHz receiver in late April, 2017.

Notable features include the blocking dynamic range (BDR) ~110dB, native .01-55 MHz coverage with up to 500 MHz in oversampling mode, low pass filter (LPF) <60 MHz, full compatibility with HDSDR, legacy SDR#, and ExpertSDR2 software.

Supported platforms are Windows® XP-10, Linux and Web-client for HTML5 browsers.

No existing USB SDR receivers combine high sensitivity and broad dynamic range. Remote operation (TCP/IP) interface is built-in and offers plug-and- play solutions for Amateur, Commercial and Government applications.

For further information call (800)977-0448 or email [email protected]

https://www.nsiradio.com

Currently we see that the ColibriNANO is selling for $249.95 USD on the nsiradio.com website. We’ve also seen the following description on the sunsdr.eu website:

With the new ColibriNANO you will be able to enjoy LF, MW and Shortwave listening in many different ways. For example you can record the entire medium wave band using 1.5 MHz sampling rate, decode CW using CW skimmer, remote control the ColibriNANO by plugging it into our RPI server. There are an endless range of applications for this small SDR. All this in a tiny USB stick!

The ColibriNANO features a Texas Instruments ADS4145 14 bit direct sampling ADC and a built in low 55 MHz pass filter that can be bypassed to receive signals up to 500 MHz (external filters  like the our 2m filtered preamp recommended).

CW skimmer and Skimmer With the external ExtIO library the ColibriNANO can be used with third party software like HDSDR etc.

This is not a cheap USB dongle found on Ebay, this high quality SDR receiver is developed by Expert Electronics and features a sturdy aluminium chassis, ESD protection, USB 2.0 interface and a quality SMA antenna connector.

Best of all, the ColibriNANO travels in your pocket and only needs your computer and an antenna! Its the ultimate portable SDR receiver!

Software support

  • ExpertSDR2
  • CW Skimmer
  • Skimmer Server
  • Third party software using ExtIO library

Specifications

  • Receiving bandwidth: 0.1 – 55 MHz
  • Oversampling receiving: 0.1 – 500 MHz
  • Blocking Dynamic Range (BDR): 110 dB
  • Sensitivity: 0.05 uV at 20M band, preamp = 0
  • IMD3 Dynamic Range: 95 dB
  • ADC resolution: 14-bit @ 122.88 MHz
  • Sample rate: 48, 96, 192, 384, 768 kHz and 1.5, 3.0 MHz
  • IQ resolution: 24 bit (16 bit at 1.5 and 3 MHz sample rates)
  • RF Input: (SMA connector, up to 15kV ESD protection)
  • Preamp range: from 31.5 up to +6 dB with 0.5 dB steps
  • Operating temperature: -10°C to 60°C
  • Dimensions: 90х25х17mm
  • Weight: 0.043kg

It looks like that this receiver may compete somewhat with the also upcoming Airspy HF+. The Airspy HF+ claims similar specs including a frequency range of 0 – 270 MHz, 14 Bit ADC and 108 dB blocking dynamic range. But the target price for the HF+ is below $200 USD.

welle.io: A New RTL-SDR & Airspy DAB/DAB+ Decoder Available for Windows/Linux

Thanks to Albrecht Lohofener for submitting to us his new software package called ‘welle.io’ which is a free DAB and DAB+ decoder and player that supports the RTL-SDR (directly or also via rtl_tcp) and Airspy software defined radios. The software can be run on both Windows and Linux, and also supports Raspberry Pi 2/3 and cheap Chinese Windows 10 tablets.

Albrecht writes that his software is a fork of the qt-dab codebase, with the development goal being to create an easy to use DAB/DAB+ software receiver. The software is still under heavy development, and Albrecht mentions that he is looking for fellow developers and testers to help improve the software and report any bugs. Albrecht writes:

I’m proud to introduce a new open source DAB/DAB+ reception application welle.io https://www.welle.io. welle.io is a fork of qt-dab http://github.com/JvanKatwijk/qt-dab (old dab-rpi and sdr-j-dab) with the goal to develop an easy to use DAB/DAB+ reception application. It supports high DPI and touch displays and it runs even on cheap computers like Raspberry Pi 2/3 and 100€ China Windows 10 tablets. As input devices welle.io supports rtlsdr and airspy.

Currently daily Windows binary builds are available over on the projects GitHub. For Linux and Raspberry Pi users you’ll need to compile the code from source, but in the future he plans to provide Ubuntu snaps.

We gave the welle.io software a brief test and it ran as expected. There is an automatic channel scan feature which scans through all the possible DAB channels and an advanced mode for seeing technical information such as the frequency, SNR and error rates. The software also has a nice touchscreen friendly GUI which automatically downloads and displays the DAB/DAB+ program guide information.

Welle.io DAB/DAB+ decoder for the RTL-SDR and Airspy.
Welle.io DAB/DAB+ decoder for the RTL-SDR and Airspy.

SpyServer: Airspy Streaming Server Now Released

SDR# has just been updated to version 1525 (changelog) and it now includes a new program called ‘SpyServer’. SpyServer is a Windows based streaming server for Airspy devices, and is somewhat similar to what rtl_tcp is for RTL-SDR devices. To run the server, all that you need to do is plug in the Airspy on the server PC and open the server software. Then on the remote PC select the ‘SpyServer’ radio source in SDR# and enter the server IP and default port.

We tested SpyServer with our Airspy R2 and found that it worked perfectly, however due to the very high data rates the maximum bandwidth cannot be used over a slow network. On a standard WiFi connection we were able to use a bandwidth of up to 250 kHz, and on a remote test server over the internet only 37.5 kHz. The author of SDR#, Youssef Touil however has mentioned that a gigabit network can support the maximum 10 MSPS bandwidth option with no problems. We assume that SpyServer will eventually be updated to include low bandwidth options which only stream compressed demodulated audio and waterfall data.

The SpyServer is also implemented with a special multi client DDC architecture. This allows for many clients to connect to a single server, and they can each have a different frequency and bandwidth (within the current active bandwidth around the center frequency).

We think that the SpyServer should also work well with the upcoming Airspy HF+, an HF optimized SDR.

SDR# running from a remote Airspy with SpyServer.
SDR# running from a remote Airspy with SpyServer.

Airspy HF+: An upcoming low cost yet high performance HF SDR

Over on the Airspy Yahoo forums and Twitter we’ve seen news of an upcoming new product from the developers of the Airspy SDR. The new product is called the Airspy HF+ and will be a low cost, yet extremely high performance HF specialty radio.

Preliminary specs:

  • HF coverage between DC .. 31 MHz
  • VHF coverage between 60 .. 260 MHz
  • -138 dBm MDS
  • -142 dBm MDS at 500Hz bandwidth in VHF
  • +26 dBm IIP3 on HF at maximum gain
  • +13 dBm IIP3 on VHF at maximum gain
  • 110 dB dynamic range in HF
  • 95 dB dynamic range in VHF
  • 120 dB Image Rejection
  • Very low phase noise PLL (-110 dBc/Hz @ 1kHz separation @ 100 MHz)
  • +10 dBm Maximum RF input
  • Wide Band RF filter bank
  • Tracking RF filters
  • Sharp IF filters
  • Smart AGC with real time optimization of the gain distribution
  • All RF inputs are matched to 50 ohms
  • 2 x High Dynamic Range Sigma Delta ADCs @ 36 MSPS
  • 600 kHz alias and image free output
  • 18 bit DDC
  • 0.5 ppm high precision, low phase noise clock
  • 4 x Programmable GPIO’s
  • No drivers required! 100% Plug-and-play on Windows Vista, Seven, 8, 8.1 and 10
  • Industrial Operating Temperature: -45°C to 85°C

Basically, this addresses the lack of affordable and good performing receivers for HF and VHF.
Target price < $200

As with all Airspy products the SDR focuses on achieving extremely high dynamic range. From the specs is seems that the dynamic range and image rejection will be high enough so that even extremely strong broadcast AM or FM stations will not require any filtering or attenuation. They are also confident enough to say that no gain sliders will need to ever be adjusted to avoid overload.

For SWLers and MW DXers this seems like the ideal SDR as it should perform as well as high end SDRs like the Perseus, RFSpace and Elad SDRs, but at a fraction of the price.

The product is still in development and no release date has been offered yet, but judging from the Twitter feed the prototype is already working.

Receiving GOES 16 Weather Satellite Images with the Open Satellite Project

Back in October/November of last year Lucas Teske showed us how to receive weather satellite images from the GOES line of geostationary satellites with an Airspy SDR (and possibly an RTL-SDR too), dish antenna and the decoding software that he created. 

On November 19, 2016 the next generation GOES 16 (aka GOES-R) satellite was launched by NASA. GOES 16 is a little different to the older GOES satellites as it has better sensors and is capable of capturing and transmitting a new image every 15 minutes which is quite fast. Thus a different and higher bandwidth RF transmission protocol called HRIT (High Rate Information Transfer) is used, compared to the LRIT (Low Rate Information Transfer) signal used on the older satellites.

Once the satellite started transmitting in January 2017, Lucas got to work on trying to create a decoder for the new satellite. After noticing some discrepancies between the published HRIT specs and the actual signal, Lucas sent off an email to NOAA and actually received an email back with the full specifications. With this information he was able to update his Open Satellite Project code and start decoding images from GOES 16.

The images being sent right now seem to just be relays of other similar satellites like Himawari-8 and Meteosat, as it seems that they are still testing the satellite. The relayed images received via GOES 16 received by Lucas can be seen on the Open Satellite Project twitter feed and on Lucas’ personal twitter feed.

Full disk image received via GOES 16, relayed from the Himawari-8 satellite.
Full disk image received via GOES 16, relayed from the Himawari-8 satellite.
Weather data received via GOES 16.
Weather data received via GOES 16.

Receiving GOES Weather Satellite Images with a Small Grid Antenna and an Airspy Mini

GOES is an L-band geosynchronous weather satellite service that can be received typically with a satellite dish. It produces very nice full disk images of the earth. In the past we’ve posted about Lucas Teske’s work in building a GOES receiving system from scratch (including the software decoder for Airspy and RTL-SDR receivers), devnullings post about receiving GOES and also this talk by @usa_satcom on decoding GOES and similar satellites.

Over on Twitter @usa_satcom has been tweeting about his experiments where he has been successfully receiving GOES L-Band weather satellite images with a small grid antenna and an Airspy Mini. In a Tweet he writes that the antenna is an $85 USD Hyperlink 1.9 GHz 22 dBi Grid Antenna made by L-com. A grid antenna may be more suitable for outdoor mounting for many people as they are typically lighter, smaller and more suitable for windy and snowy conditions. As the GOES satellite is in geosynchronous orbit, no tracking motor or tracking mount is required.


Cloud-SDR Releases New Client and Server Software for the RTL-SDR

Cloud-SDR is a company that aims to make using SDR over the cloud/network/internet easier. It allows you to set up a remote SDR server that you can access from anywhere. Previously Cloud-SDR was still in development, but now we recently received mail from Cloud-SDR programmer Sylvain that the client and server software has just been released for the RTL-SDR. It appears that it also currently supports the Airspy, BladeRF, SDRplay and PerseusSDR.

The email reads:

I am pleased to inform you that we have just released two softwares compatible with your devices :

  • The Cloud-SDR free client, a windows + Linux (to be released soon) client able to run locally RTL-SDR devices (check the news/turorials, we have featured several times dongles from your blog)
  • The Cloud-SDR streaming server (codenamed SDRNode) , a windows + Linux (to be released soon) multi-user configurable streaming server.

SDRNode is a commercial software but an evaluation version is already available. Both softwares can be downloaded from our store after registration.

Source code for the drivers are already released as open source software through our GitHub repo: https://github.com/cloud-sdr

You can find more details here :

The Cloud-SDR Network
The Cloud-SDR Network

To download the software you must register an account with them at https://store.cloud-sdr.com/my-account. The client is free but the server costs 110 euros for personal and hobby usage, although a 30 day trial version is available. Currently only the Windows Client and Server are available, but they write that Linux should be available soon.

We tested the software out with an RTL-SDR V3. The client installation process was a simple wizard and after installation we launched the Cloud-SDR client by opening the shortcut “cSDRc” in the Start Menu. We found that the hardware needed to be plugged in first for the client to recognize it. The client is basic, but can already demodulate USB/LSB/CW/AM/FMN without trouble. It also has some interesting features:

  1. Dual channel receiver: RXA and RXB are two totally independent receivers;
  2. Geographic integration: Display on map beacons, ADS-B reported airliners, known HF broadcast stations or any geo-localized information coming from the SDRNode server;
  3. GPS compatibility: plug a GPS receiver to your computer and track your location on the map, record signals with your position for later processing (coverage mapping etc.); display the UTC time;
  4. Digital Terrain Elevation: See the terrain elevation around your position, or in the direction of the antenna directly on the map (requires to download the free SRTM3 files from NASA, with 90m resolution);
  5. MP3 audio recording: record to mp3 the demodulated streams to reduce disk requirements;
  6. Chat with other users connected to the SDRNode Group: when used as a remote client for the SDRNode streaming server, you can interact with other users with messages or station spotting;
  7. Time-domain analysis: the MSR mode enables analysis of any sub-band and displays in real time the time domain signals of the selected spectrum portion. This sub-band can also be recorded (with geographic position if GPS is connected) and processed with provided MATLAB®.
The Cloud-SDR Client Software
The Cloud-SDR Client Software

Next we tested the evaluation version of the SDR-Node server software on a remote laptop with an RTL-SDR connected. Again installation was easy, just follow the wizard after ordering the evaluation version. SDR-Node installs itself as a Windows service which starts up automatically on boot. To set up the Node we followed the guide shown in the video below. To connect with the client you need to know the IP address of the remote computer, the port is 8080, and the certificate is displayed on the server PC SDR-Node dashboard. We note that we also had to disable the Windows firewall to get it to connect, but it should be possible to also add SDR-Node to the firewall whitelist.

Using the SDRNode wizard

When streaming it appears that only 1/4 of the SDR sample rate can only be sent over the network. There are also compression options which can be used on slower networks or the internet to reduce bandwidth. Using the interface while in network mode was slightly laggy, but the waterfall and audio was smooth.

Overall everything worked as expected and it looks to be a very useful tool. More information is available at cloud-sdr.com. Some already existing alternative remote SDR streaming software that supports the RTL-SDR includes rtl_tcp, the SDR Console V2 server, OpenWebRX and ShinySDR.