Category: Airspy

GNU Radio Amateur Radio Meeting: A Look at Project 25 (P25) Digital Radio

Over on their YouTube channel GNU Radio have uploaded a recent talk by Aaron Rossetto titled "A Look at Project 25 (P25) Digital Radio". The talk explains the North American public safety P25 system in great depth, and is a good watch for anyone looking into details on how the system works in a deeply technical way. He later shows some examples of his P25 decoding and recording setup. Slides can be found here, and the video is posted below.

Agenda: In this presentation, I will introduce Project 25 digital radio, with a strong emphasis on its use in North American public safety trunked radio systems, and to describe experiments monitoring and decoding P25 traffic using GNU Radio code.

  • What is Project 25?
  • A brief introduction to trunked radio
  • Diving into the P25 protocol
    • Modulation
    • Packet framing and encapsulation
    • Packet types
  • GNU Radio and P25 decoding experiments
Amateur Radio Meetup: P25 Trunked Radio

SDRSharp Guide by IZ1MLL Updated

Thank you to Paolo Romani IZ1MLL for letting us know that he has updated his popular SDRSharp users guide that we posted about previously last December. The guide is available on the Airspy downloads page. SDR# (aka SDRSharp) from Airpsy.com is designed for Airspy SDRs, however it is one of the most popular SDR receiver programs that is used with RTL-SDRs as well. Paolo's guide covers all of the settings and features in SDR# as well as some third party plugins. Paolo writes:

In the last month I have completely rewritten the guide for other devices and for the latest radical changes to the software. From today, version 2.1 is available in Italian and English for all interested guys.

We note that the guide has also been translated in Spanish and Russian, although at the time of writing those translations are still only for the older guide. 

SDRSharp Guide

Building an 11.2 GHz Radio Telescope with an Airspy and 1.2m TV Satellite Dish

In the past we've posted several times about how 1.42 GHz Hydrogen Line amateur radio telescopes used with RTL-SDRs or other SDRs for Hydrogen line observations of the galaxy. Recently Hackaday ran a post highlighting a project from "PhysicsOpenLab" describing an 11.2 GHz radio telescope that uses an Airspy SDR as the receiver.

Celestial bodies emit radio waves all across the radio spectrum and typically observations can be made anywhere between 20 MHz to 20 GHz. Choosing an optimal frequency it is a tradeoff between antenna size, directivity and avoiding man made noise. For these reasons, observations at 10-12 GHz are most suitable for amateur radio telescopes.

The posts by PhysicsOpenLab are split into two. The first post highlights the hardware used which includes a 1.2m prime focus dish, and 11.2 GHz TV LNB, a wideband amplifier, a SAW filter, a bias tee, and the Airspy SDR. The LNB converts the 11.2 GHz signal down to 1.4 GHz which can be received by the Airspy. Once at 1.4 GHz it's possible then to use existing commercial filters and amplifiers designed for Hydrogen line observations.

The second post explains the GNU Radio based software implementation and the mathematical equations required to understand the gathered data. Finally in this post they also graph some results gathered during a solar and lunar transit.

Finally they note that even a 1.2m dish is quite small for a radio telescopic, but it may be possible to detect the emissions from the Milky Way and other celestial radio sources such as nebulae like Cassiopeia A, Taurus A and Cygnus A a radio galaxy.

A 11.2 GHz 1.2m Amateur Radio Telescope with GNU Radio and Airspy

SDRSharp Upgraded to .NET5 with New Plugin SDK For Developers

The popular SDR# (SDRSharp) software has recently been updated to version 1788, and now runs on the .NET5 SDK. Most of the upgrades are behind the scenes, but generally the new version appears to be more memory efficient and loads faster. The new version also brings more theme and layout customizations and as explained further below an improved plugin SDK for developers. 

In order to install the latest version you will need to download .NET5 runtime from Microsoft which may not already be on your system. For RTL-SDR users you can then run install-rtlsdr.bat then start the software as usual.

One of the most exciting new developments is the new .NET 5 plugin SDK that is now available. This allows third party developers to easily code up plugins for SDR#. While a plugin SDK already existed before, the new version appears to make development much simpler, and also comes with a few examples to help get developers started quickly. The result is that we should start to see more plugins appearing in the future with more features.

SDR# .NET5 Plugin SDK Example Code

One plugin called Scytale-C for Inmarsat STD-C channel decoding has already been updated to the new SDK. The developer notes that the plugin now works great with the SDR# "slicer" feature, which allows users to decode multiple STD-C signals within the received bandwidth at the same time. 

We've also recently seen reports of Twitter users having success with running this new SDR# version on WINE under Linux. Unfortunately direct USB still doesn't work under WINE, but it would still function via SpyServer or rtl_tcp.

Tech Minds tests out the YouLoop HF Passive Loop Antenna

Over on YouTube Tech Minds has uploaded a new video where he unboxes and tests a YouLoop HF Passive Loop Antenna with his Airspy. The YouLoop design is also known as a Möbius loop, or noise cancelling passive loop "NCPL". The passive nature of the antenna means that highly sensitive radios will work best with it, however limited results may still be obtained with other radios. The advantages are extremely low levels of interference pickup and high portability.

In the video Tech Minds explains the specifications of the antenna before demonstrating the antenna receiving the HF bands with an Airspy + SpyVerter. He also tests the loop on VHF, demonstrating its ability to receive a distant 2M beacon.

We note that we sell official YouLoop antennas on our store for $34.95 including free shipping to most countries.

YouLoop HF Passive Loop Antenna

Airspy Black Friday Deals Now Active

Airspy have released their black Friday 2020 deals today with 30% off. Back in 2019 we saw that the black friday deals were the best time to purchase an Airspy and we don't expect pricing to get cheaper than this. Links to their distributors can be found on airspy.com.

Airspy sell a range of software defined radios. The HF+ Discovery is one of the best (if not the best) low cost HF SDRs we've ever tested, and the Airspy Mini and R2 are good wide band VHF/UHF radios that are a step up from RTL-SDRs. The SpyVerter is a good upconverter that is also compatible with RTL-SDRs, and can be used with the bias tee on the RTL-SDR Blog V3.

The sale brings the pricing down to the following prices in USD (plus shipping costs):

Airspy HF+ Discovery: $169 $118.30
Airspy Mini: $99 $69.30
Airspy R2: $169 $118.30
SpyVerter R2: $49 $34.30

Frugal Radio has also uploaded a short video regarding the sale. 

Information about Receiving the GOES-13 Weather Satellite (Europe Coverage with 1.8m Dish)

For some time now many weather satellite enthusiasts have enjoyed the ability to relatively easily receive live high resolution images directly from the GOES-16, GOES-17 and GK-2A geostationary satellites (tutorial here). However, while much of the world can see at least one of these satellites, European's have been left out.

What may be of some interest to Europeans is that the older GOES-13 (aka EWS-G1) satellite was repositioned in February 2020, and it can now be received in Europe (as well as Africa, the Middle East, Asia, Russia and West Australia) until at least 2024 when it will be replaced.

The important catch however is that GOES-13 is not broadcasting the same easy to receive LRIT/HRIT signals that the other satellites use. The signal is still in the L-Band at 1685.7 MHz, however it is called "GVAR" and it is much weaker and uses 5 MHz of bandwidth. For GOES 16/17 and GK-2A a 1m WiFi grid dish, LNA and RTL-SDR was sufficient, but for GOES-13 you'll need a much larger 1.8m dish, and a wider band SDR like an Airspy. The big dish requirement significantly increases the reception challenge.

We also note that the decoder is being developed by @aang254 and u/Xerbot and it is not yet publicly released. However, they do intend to release it soon. Update:

Over on his blog Carl Reinemann has been collecting some useful information about GOES-13 reception. Over on Reddit u/derekcz has also created a post with some useful information. We've also been talking to @ZSztanga in Poland who has been testing this satellite out, he wrote:

My hardware is: 180cm prime focus dish, with a custom cantenna (120mm diameter). I'm using the SAWBIRD GOES LNA. I will be switching to the + version, because the setup is still lacking a few db SNR. The SDR is the one I use for HRPT: the airspy mini

I found that the USB connection on the airspy generates a lot of noise, so I removed the USB cable, by moving the airspy to the laptop. I use 2m of CNT-400 coax and it works much better now. I get about 2 db SNR more. Thought you might find it interesting.

@ZSztanga's GOES-13 Reception Setup, with 1.8m dish.

We note that there is some interesting differences with GOES-13 images. Since the image is less processed, it is higher resolution (a full resolution image can be found on this Reddit post), as well as not cropped, meaning that the Earth's atmosphere is visible. Please also follow @ZSztang on Twitter for more images.

Frugal Radio: SDR Guide Ep 6 – Trunk Tracking Public Safety Systems with UniTrunker and SDRTrunk

In this episode of Frugal Radio's ongoing SDR Guide videos Rob demonstrates how he uses Unitrunker and SDR Trunk with SDRs like an RTL-SDR to monitor Public Safety networks in his area. Rob writes:

This is a video demonstrating how I use UniTrunker and SDRTrunk with Software Defined Radios to monitor multiple Public Safety networks in my area.

There is some information on how trunked systems work, and you can hear how my SDRs produce better P25 audio on a Simulcast (LSM) system than some scanners.

I use a couple of RTL-SDR v3s and an Airspy R2 in this episode.

2020 SDR Guide Ep 6 : Trunk tracking Public Safety systems with UniTrunker and SDRTrunk