Category: LimeSDR

Lightweight Windows Software uSDR Updated to Version 1.5.0

Since 2021 we've posted about Viol Tailor's "uSDR" (microSDR) software a couple of times. uSDR is a lightweight general purpose multimode program for Windows that supports the RTL-SDR, Airspy, BladeRF, HackRF and LimeSDR radios. The software can be downloaded from SourceForce.

Viol notes that recently the project has been updated to V1.5.0 which brings the following new features and changes.

  • lock device frequency on zoom option
  • keep waterfall history – the very great option, do not lose any rare signals
  •  advanced passband IQ recorder
  • passband IQ TCP server for remote processing, C/C++ client source examples included
  • advanced audio player, auto selectable sample rate, separate left/right channels
  • CTCSS decoder
  • markers import option convenient for merge markers 
  • Ctrl+Shift+Drag Up/Down – change spectrum magnitude offset
  • Ctrl+Shift+Mouse Wheel – change spectrum magnitude range (vertical zoom)
  • Ctrl+Mouse Hover – highlight nearest marker
  • Ctrl+Double Click– tune to highlighted nearest marker
  • band plan visualization, simple text format
  • frontend interface improvements
  • GUI improvements
  • spectrum and waterfall popup menus improvements
  • a lot of bug fixes
uSDR aka microSDR. A lightweight SDR receiver program from Windows.

SignalsEverywhere: Setting up and using SDR++ Server

On this weeks SignalsEverywhere episode, Sarah demonstrates and shows us how to use the SDR++ Server, which was released as a beta earlier this year. SDR++ Server is similar to software like rtl_tcp, and Spyserver as it allows us to connect to a remote networked SDR like an RTL-SDR. Compared to rtl_tcp and Spyserver however, SDR++ Server has a huge advantage in that it is compatible with almost any SDR, and enables the full range of control options for RTL-SDRs.

In the video Sarah shows us how to activate the SDR++ server module and how to connect to a remote RTL-SDR running the SDR++ server on a Raspberry Pi. She goes on to show how to connect to other SDRs running on the Raspberry Pi as well, such as the SDRplay RSP Duo, LimeSDR, Airspy R2 and Airspy HF+ Discovery. Finally she goes on to show how to set up the server on Windows and a Raspberry Pi.

SDR++ Server | Remote RTL-SDR SDRPlay LimeSDR AirSpy and More! | Raspberry Pi and Windows Setup Tut

LimeSDR Mini 1.0 End of Life, and LimeSDR Mini 2.0 to be Released

The LimeSDR Mini is a sub $200 RX and TX capable SDR with 12-bit ADC, 10 MHz to 3.5 GHz tuning range and up to 40 MHz of live bandwidth. 

Due to supply chain difficulties sourcing the FPGA used on the LimeSDR Mini, an End of Life statement for the original LimeSDR Mini has now been released. However, the silver lining is that at the same time as this announcement Lime Microsystems have announced their plans to release the LimeSDR Mini 2.0.

Between the LimeSDR Mini 1.0 and the 2.0, there appear to be no major changes apart from the Intel Max 10 FPGA with 16k logic gates being replaced by the larger Lattice ECP5 FPGA with 44k logic gates. Lime Micro notes 

Not only is the ECP5 more readily available than the Intel MAX10 FPGA used in the previous design, but it has an extensive set of open source tools and a great community of developers.

The LimeSDR Mini 2.0 is in currently the 'coming soon' status on CrowdSupply and you can subscribe there to get updates on when it is released.

The LimeSDR Mini 2.0

Receiving X-Band Images from the Arktika-M1 Arctic Monitoring Satellite

Recently on Twitter @arvedviehweger (Arved) has tweeted that he has successfully received images from the Russian Arctic monitoring satellite known as ARKTIKA-M1, via it's X-band downlink at 7865 MHz. We've reached out to Arved and he's provided the following information on his setup and how he's receiving and decoding the images.

 

The Arktika-M1 satellite is a Russian weather satellite which operates in a HEO orbit. It was launched in February 2021 and has downlinks on multiple bands. The main payload downlink for the imagery is on 7865 MHz (which is also known as the lower X-Band). The satellite only transmits imagery on the X-Band at the moment, it is currently unknown whether it will ever transmit any image data on L-Band.

For Amateur reception that means having access to X-Band RF gear. It usually consists of a low noise pre-amplifier and a downconverter to convert 7865 MHz down to a lower frequency for easier reception with a high bandwidth SDR such as the LimeSDR, a USRP etc.

In my personal setup I use a surplus pre-amplifier made by MITEQ (around 36dB of gain, 1dB NF), my own self-made DK5AV compact X-Band downconverter and a LimeSDR-USB.

The L-Band gear is mounted on top (helix and the pre-amp behind it) and the X-Band gear is right below. From left to right you can see the feed, the downconverter (silver box) and the LNA (mounted to a heatsink and a fan). Recording is done with a LimeSDR-USB running at a sample rate of 50 MSPS. The satellite transmits every 15 minutes once it reaches its apogee, each transmission including the idle period lasts for about 10 minutes. Some pictures of the idle transmission and the actual data transmission can be found in this Tweet, [noting that Idle = more spikes, actual data looks weaker]:

Depending on the geographical location a rather large satellite dish is also required for Arktika-M1. Reception reports all over Europe clearly show that the satellite has a beamed antenna (similar to ELEKTRO-L2).

In my setup I can get away with a 2.4m prime focus dish (made by Channel Master) in North Eastern Germany. It produces around 9 - 10 dB of SNR in the demod of @aang254’s excellent SatDump software. Anything above 5dB will usually result in a decode but since the satellite does not have any FEC you will need more than that for a clean picture. (Image of SNR in Satdump)

SDRAngel Features Overview: ADS-B, APT, DVB-S, DAB+, AIS, VOR, APRS, and many more built-in apps

SDRAngel is a general purpose software defined radio program that is compatible with most SDRs including the RTL-SDR. We've posted about it several times before on the blog, however we did not realize how much progress has occurred with developing various built in plugins and decoders for it.

Thanks to Jon for writing in and sharing with us a demonstration video that the SDRAngel team have released on their YouTube channel. From the video we can see that SDRAngel now comes stock with a whole host of built in decoders and apps for various radio applications making it close to an all-in-one SDR platform. The built in applications include:

  • ADS-B Decoder: Decodes aircraft ADS-B data and plots aircraft positions on a map
  • NOAA APT Decoder: Decodes NOAA weather satellite images (in black and white only)
  • DVB-S: Decodes and plays Digital TV DVB-S and DVB-S2 video
  • AIS: Decodes marine AIS data and plots vessel positions on a map
  • VOR: Decodes VOR aircraft navigational beacons, and plots bearing lines on a map, allowing you to determine your receivers position.
  • DAB+: Decodes and plays DAB digital audio signals
  • Radio Astronomy Hydrogen Line: With an appropriate radio telescope connected to the SDR, integrates and displays the Hydrogen Line FFT with various settings, and a map of the galaxy showing where your dish is pointing. Can also control a dish rotator.
  • Radio Astronomy Solar Observations: Similar to the Hydrogen line app, allows you to make solar measurements.
  • Broadcast FM: Decoding and playback. Includes RDS decoding.
  • Noise Figure Measurements: Together with a noise source you can measure the noise figure of a SDR.
  • Airband Voice: Receive multiple Airband channels simultaneously
  • Graves Radar Tracker: For Europeans, track a satellite and watch for reflections in the spectrum from the French Graves space radar. 
  • Radio Clocks: Receive and decode accurate time from radio clocks such as MSF, DCF77, TDF and WWVB.
  • APRS: Decode APRS data, and plot APRS locations and moving APRS enabled vehicles on a map with speed plot.
  • Pagers: Decode POCSAG pagers
  • APRS/AX.25 Satellite: Decode APRS messages from the ISS and NO-84 satellites, via the built in decoder and satellite tracker.
  • Channel Analyzer: Analyze signals in the frequency and time domains
  • QSO Digital and Analog Voice: Decode digital and analog voice. Digital voice handled by the built in DSD demodulator, and includes DMR, dPMR and D-Star.
  • Beacons: Monitor propagation via amateur radio beacons, and plot them on a map.

We note that the video doesn't show the following additional features such as an analog TV decoder, the SDRAngel "ChirpChat" text mode, a FreeDV decoder and several other features.

A SDR Digital Voice Hotspot with GNU Radio, MMDVM and QRadioLink

Thank you to Adrian (YO8RZZ) for writing in and sharing with us his article explaining how to use an SDR to set up a digital voice hotspot for digital voice modes supported by MMDVM such as D-Star, DMR, System Fusion, P25 and NXDN. Adrian notes that this is possible with any full duplex SDR such as the LimeSDR or PlutoSDR, or with a combination of simplex devices, such as a HackRF for transmitting combined with an RTL-SDR for receiving.

MMDVM is firmware that normally runs on an ARM microcontroller board such as the Arduino Due, and is designed to be interfaced with hardware radios via the microcontrollers built in ADC and DAC hardware.

In order to use an SDR instead of physical hardware radios, Adrian's article describes how a fork of MMDVM called MMDVM-SDR is used in his system as this allows the code to run on a normal Linux computer with an SDR. GNU Radio running on Adrian's own QRadioLink software is then used to create software ADC/DAC interfaces for the SDR and MMDVM-SDR to interface with, as well as providing a user interface.

QRadioLink used as the UI for MMDVM-SDR and GNU Radio

uSDR: A Lightweight Multimode SDR Receiver Program for Windows

Thank you to Viol Tailor for submitting news about the release of his general purpose multimode software defined radio receiver program for Windows called "uSDR" or "microSDR". Viol writes that uSDR is designed as a lightweight binary with a simple and compact user interface and highly optimized DSP to minimize CPU, hence the "micro" part of the name.

The software is compatible with RTL-SDR, Airspy, BladeRF, HackRF and LimeSDR radios. It has features including demodulation, base band and pass band recording, playback, and spectrum and waterfall visualizations.

uSDR aka microSDR. A lightweight SDR receiver program from Windows.

LibreCellular: Easy 4G Cellular Network with LimeSDR and Intel NUC

We recently came across the LibreCellular project which is aiming to make it easy to implement 4G cellular networks with open source software and low cost SDRs. The project appears to be in the early stages, and seems to be focusing on deploying and modifying existing open source 4G basestation software known as srsRAN which will be used with a particular combination of hardware in order to create a reliable and easy to set up 4G basestation solution.

The reference hardware that they are recommending consists of an Intel NUC single board computer ($699), LimeSDR ($315), LimeRFE front end filtered power amplifier ($699), and Leo Bodnar Mini Precision GPS Reference Clock ($140). All together you can create a 4G basestation for around $1850.

LibreCellular Components for a 4G Basestation: LimeRFE, Leo Bodnar GPS Clock, LimeSDR, Intel NUC.