Category: RTL-SDR

Chris Reviews the RTL-SDR Blog V4 on the HF Bands

Thank you to Chris (NNN0BOC) for writing up a glowing review of the RTL-SDR Blog V4. In the review Chris covers the enhancements that the VB4 brings to the HF bands, the driver replacement, and tests it out on various signals such as STANAG S4285, HF FAX, HFDL, GMDSS, MilSpec 141A ALE and various SWL bands. In his tests he uses SDR-Console V3, of which there is now a beta version that has built in support for the RTL-SDR Blog V4 (scroll down the page to find the V3.3 beta download).

Chris makes note that the RTL-SDR Blog V4 does not have the Nyquist aliasing problem that occurs in the RTL-SDR Blog V3 and other RTL-SDRs that enable HF reception through direct sampling. Nyquist aliasing on the RTL-SDR means that signals will be folded around 14.4 MHz. So for example a real signal at 8 MHz would also show up on 14.4 + (14.8 - 8) = 20.8 MHz and vice versa. The lack of Nyquist aliasing makes for a much cleaner spectrum.

Chris summarizes with the following:

I must admit I spent _a lot_ of time just looking at the beauty of HF with the V4, watching all the crazy goings-on, the weird sweepers and random signals popping up and disapearing.

I didn't run into any dynamic range issues or stability issues stemming from the V4, I wondered if I would have to perhaps place the RTL SDR AMBC Filter in line to suppress the many AMBC signals always present, never had a prob. The 120+ foot horizontal loop antenna feeding the V4 only has a 30MHz lowpass filter in line to hinder any rf that impinges upon it.

For such an inexpensive and tiny device, and free-to-use software, the capabilities are really kinda amazing. I now want an RTL SDR embedded into a cheap phone to use as a spectrum display on non-sdr HF receivers!

The V4 seems to atone for some of the sins of the V3, especially on HF with specific regard to Nyquist aliasing, have no fear tuning above 14.4MHz dear friends, this thing won't be making aliases unless you are overloading it.

At this time I can't think of a better value for the money when shopping for an SDR to use with a pc or phone in the sub - $50 price range.

We note that the RTL-SDR Blog V4 dongle only is currently in stock on our store from our international shipping warehouse, and the V4 dongle + antenna set will be in stock in about a weeks time.

RTL-SDR Blog V4 Dongle Back in Stock!

The RTL-SDR Blog V4 dongle (dongle only), is back in stock for international shipping today! The V4 Dongle + Antenna set will be back in stock after about a week. Please note that shipping will be a few days delayed due to a multi-day public holiday in China this week. Amazon will be stocked with V4 dongles in about five weeks time.

The V4 dongle can be ordered from our store at www.rtl-sdr.com/store.

Also see our release post and V4 users guide pages for more information about the RTL-SDR Blog V4.

Please remember that not all software is compatible with the RTL-SDR Blog V4 yet. The majority of programs on Windows and Linux are already compatible, or just require a simple driver swap, but some programs on MacOS and Android will need more time to update because on these platforms the drivers are bundled with software.

Please consult the V4 users guide for the latest information about software compatibility and how to update the drivers.

We note that there have been some false rumors on various forums that the RTL-SDR Blog V4 is totally out of stock already as it is a limited edition product. We want everyone to know that that while it is a limited edition product, there should be enough stock for about a year.

Discovery Dish Pre-Launch: A Lightweight Dish and Feed for L-Band Weather Satellites and Hydrogen Line Reception

For the past few years we have been working on finding the best way to help beginners get started with L-band weather satellite reception and basic radio astronomy. We have now come up with a solution that we're calling the 'Discovery Dish' - a lightweight 65 cm diameter dish and active filtered feed set.

Discovery Dish: Simplified system for weather satellite reception and hydrogen line radio astronomy

The Discovery Dish will be crowd funded, and we currently have a pre-launch page set up on Crowd Supply. So if you are interested, please visit the pre-launch page and click on the Subscribe button for updates.

Discovery Dish is a 65-cm diameter aluminum satellite dish and active filtered feed designed for receiving GOES HRIT, GK-2A LRIT, FengYun LRIT, NOAA HRPT, Metop HRPT, Meteor M2 HRPT and other weather satellites that operate around 1.69 GHz. The dish is designed to weigh under one kilogram, and it splits into three petals, making it easier to ship worldwide. The 1.69 GHz feed contains a built-in LNA right at the feed point, as well as filtering, which means that there is almost no noise figure loss from cables or connectors.

Note that the prototype images show an early non-petalized prototype with rough laser cut wind holes. The production version will obviously be a lot neater looking! 

In testing the 65 cm diameter Discovery Dish with it's highly optimized feed has proven effective at receiving the GOES HRIT satellite signal with SatDump. We typically achieve SNR values of 3-4 dB to GOES-18 at 24 deg elevation, and with SatDump an SNR of 1 dB is about the minimum required to receive images so there is plenty of margin. It can also easily receive LRIT from GK-2A and Fengyun, and also when combined with an antenna rotator (or manual hand rotating) can receive HRPT weather satellites too.

The feed on the Discovery Dish consists of a tuned dipole feed with two 5V bias tee powered low noise figure LNAs, and two SAW filters (centered at 1680 MHz with 69 MHz Bandwidth). The feeds are also easily swapped out, and we will also be selling a 1.42 GHz Hydrogen Line feed for those who want to use the dish to get started with radio astronomy. Because the LNA's are right by the feed there is are no losses from feed to LNA, so we can use thinner and easier to handle cabling like RG58 without any loss issues.

In the past we've recommended and relied on 60 x 100 cm WiFi dish antennas for L-Band geosynchronous satellites and Hydrogen Line reception, but at 1.6kg these are too heavy, wide and exert too much torque for light duty antenna rotators to handle. At about half the weight of an equivalent WiFi Dish, the Discovery Dish is much easier to handle.

In the future we hope to be able to provide a low cost light duty antenna rotator that compliments the Discovery Dish. Currently we have tested the Discovery Dish with the AntRunner antenna rotator and found it to be light enough for that rotator to handle, versus a WiFi dish which is far too heavy for it.

Also when compared to a WiFi dish, the Discovery Dish is much easier to optimally set the offset skew as you can simply rotate the feed, versus having to rotate the entire dish at 45 degree increments.

We will also be offering an outdoor electronics enclosure that can be used to house a Raspberry Pi, RTL-SDR and other components like POE splitters. In our tests we have been running an RTL-SDR Blog V4, Orange Pi 5 and POE splitter in the enclosure, and running the SatDump GUI directly on the Orange Pi 5. This results in a neat contained system where only one Ethernet cable needs to be run out to the enclosure. 

As we are in pre-launch, pricing is not yet confirmed, but we expect the Discovery Dish to sell for less than US$200 with reasonable worldwide shipping costs. It will be a similar cost to what you would pay if you purchased a WiFi dish, filtered LNA and cabling yourself. Obviously please check what satellites can be seen in your region.

 

GOES HRIT
GOES HRIT
Meteor M2 HRPT
Meteor M2 HRPT
FengYun LRIT
FengYun LRIT

Manuel Compares the RTL-SDR Blog V3 vs RTL-SDR Blog V4

Not too long ago we released our first batch of RTL-SDR Blog V4 dongles, and most have been received by customers now. The next batch is coming soon, and we should be able to start sales again within the next 1-2 weeks from this post. It is incorrect rumors that they are totally sold out forever already. There should be sufficient stock for at least a year, so everyone who wants one will can get one.

In his latest YouTube video Manuel Lausmann compares the performance of the RTL-SDR Blog V3 and the RTL-SDR Blog V4. The video is narrated in German, however YouTube's autotranslate + captions feature works well.

In the video he first compares the performance on HF, noting that there are significantly less interference signals in the HF spectrum due to the lack of Nyquist folding around 14.4 MHz, which is a known problem with the direct sampling mode. He later also compares performance in the VHF and UHF bands, notably finding an improvement in the 145 MHz region where the V3 has a pumping noise floor from out of band interference, whereas the V4 does not thanks to it's additional filtering.

Der neue RTL SDR V4 VS RTL SDR V3

SatDump Version 1.1.0 Released – Feature Overview

SatDump is a popular program that can be used with RTL-SDRs and other software defined radios for decoding images from a wide array of weather imaging (and other) satellites including GOES, GK-2A, NOAA APT, NOAA HRPT, FengYun, Electro-L and Meteor M2 LRPT + HRPT, and many many others. It is multiplatform, running on Windows, MacOS, Linux and even Android. Because of it's good decoding performance, wide satellite and OS compatibility, it is the most recommended software for satellite decoding.

Recently SatDump was updated to version 1.1.0 and the new version brings many enhancements and new features. In summary, Lua scripting support has been added, calibrated products are now possible, composites can be made via Lua scripting, nightly builds are now available on GitHub, Mac .dmg builds are now available, decimation has been added, an SDR Server is available, and a Windows installer was added.

Support for various satellites and their instruments have also been added for NOAA APT, CCSDS LDPC decoding for Orion, LandSat-9, TUBIN X-Band, FengYun-3G/3F, Meteor M2-3, Geonetcast (soon), GOES RAW X-Band,  STEREO-A, DSCOVR EPIC, ELEKTRO-L N°4, Inmarsat STD-C, UmKA-1 (soon), PROBA-V GPS .

SatDump also now includes rotor tracking control which works together with it's satellite pass predictor and scheduler. There is no more need to use programs like Orbitron or Gpredict as everything can be handled by SatDump.

An insane amount of work has gone into SatDump, so if you like the software please remember to support the developer @aang23 by donating on Ko-Fi.

SatDump Rotator controller, Tracker and Scheduler

M2_LRPT_DECODER Version 59 Released

Thank you to Carl Reinemann for writing in and sharing with us that the Meteor M2 LRPT decoder by Oleg (Robonuka) was recently updated. The Russian Meteor M2-3 weather  satellite was launched in June of this year and is currently the only operational Meteor M2 satellite in the sky. It transmits images at 137 MHz in the digital LRPT format.

To receive it a simple V-Dipole antenna and RTL-SDR is usually sufficient. And to decode it software like SatDump or M2_LRPT_DECODER combined with the Meteor Demodulation Plugin for SDR# can be used. Instructions for the latter are available on HappySats instructional page.

Regarding the update Carl writes:

Thanks to Oleg (Robonuka), Happysat and Usradioguy have been testing the new decoder for about 6 weeks now, and it is ready to go!

  • The stability of the processing has been improved: The decoder is now more likely to produce stable results, even when there are errors in the input data.
  • The procedure for generating RGB and calculating GEO in the error-handling block has been improved. Now, the decoder's processing is considered unfinished until the GEO calculation is completed.: This means that the decoder will now wait until the GEO calculation is finished before generating the RGB values. This helps to prevent errors and produce more accurate results.

  • Exception errors fixed: Some errors that were previously causing the decoder to crash have been fixed.

  • AutoClose=yes by default: This means that the decoder will now automatically close when it is finished decoding. This can be helpful for saving resources and preventing memory leaks.

  • 80K is much more stable: The decoder is now more stable than before. This means that it is less likely to crash or produce unexpected results.

  • Overall, these changes make the decoder more reliable and easier to use.

    V59 Software can be downloaded from my page https://usradioguy.com/meteor-m2-3/ , or on happysats page

    Update instructions are on my page as well.
Screenshot of an older version of M2 LRPT Decoder
 

Recent Talks from the Society of Amateur Radio Astronomers 2023 Conference

Over on their YouTube channel there have been numerous talks uploaded over the past few months from the 2023 Society of Amateur Radio Astronomers (SARA) conference. Some of these talks are quite useful for beginner radio astronomers who are getting started with small dishes and software defined radios like the RTL-SDR.

One talk by Alex Pettit describes how to build a radio telescope from a an umbrella and some "Faraday fabric" which is copper cloth. The results show more than adequate performance for the cost, making this an affordable and easy entry to radio astronomy.

Alex Pettit - Umbrella Antennas

Another video presented by Dr. Wolfgang describes building small to medium sized radio telescopes. He explains how small radio telescopes less than 3 meters in size can work well for receiving the 21cm Hydrogen line, and how SDRs are the best choice of receiver for them. Many examples of small dish installations are shown.

Dr. Wolfgang Herrmann: Building Small/Medium Size Radio Telescopes

A Tape Measure Antenna for Receiving HF Numbers Stations

In his Hackaday.io post (and a post on the main Hackaday blog), Tom Farnell explains how he used two 10-meter tape measures combined with an RTL-SDR Blog V3 software defined radio to receive numbers stations in the HF bands. We want to add that this antenna isn't restricted to just numbers stations, and could receive many different types of shortwave and amateur stations on HF.

In his post Tom explains what numbers stations are and why they are interesting. In brief, a numbers station is a radio broadcast of a voice saying a bunch of numbers continuously. These stations are known to be espionage related, containing some sort of coded message for international spies to decode.

Tom goes on to show how the antenna is constructed. As HF antennas need to be long to get the best reception, Tom uses the long metal tape measure and attached it to the included dipole assembly that comes with the RTL-SDR to increase them to an appropriate length. 

Intercepting Spy Radio Messages With A Tape Measure