Category: Satellite

Using SDR to Investigate Telemetry Still Broadcasting from 1960’s Satellite Transit-5B5

Thank you to Derek @ok9sgc for pointing us to some work Reddit user u/Xerbot has been doing on receiving telemetry coming down from a "dead" 1960's satellite called Transit-5B5. The fleet of Transit satellites was used for military navigation with the first launch in 1959 and the last in 1988. All in the fleet have since died apart from Transit-5B5 which continues to transmit telemetry at 137 MHz when receiving power from in the sun. Derek writes:

Turns out that the TRANSIT 5B-5 satellite's telemetry still has signs of some of the satellite's systems operating (albeit with a questionable reliability). The satellite represents an amazing legacy for all the people that worked on it in the 1950s and 60s, but due to its age it is also very difficult to find technical documentation about the telemetry (or I should rather say impossible), so to make sense of the data that's being broadcast by the satellite would require many people receiving, decoding, and comparing their results, mainly to identify any patterns in the satellite's behavior and the resulting demodulated data.

Derek and u/Xerbot are asking the SDR community to help collect more sample data, which might help in finding a way to decode some of the telemetry. If you have data to contribute, you can contact @ok9sgc on Twitter, and u/Xerbot on Reddit.

This reminds us of an old post from reader happysat where he demonstrated with an RTL-SDR that many "dead" satellites are actually still transmitting telemetry. Due to suspected chemical breakdown of the onboard batteries, the satellites tend to turn themselves on again when the solar panels receive sunlight.

The Transit-5B5 Satellite Telemetry Signal at 137 MHz

Tech Minds: Decoding Orbcomm Satellites with a Software Defined Radio

Over on his YouTube channel TechMinds has uploaded a new video showing how to decode signals from Orbcomm satellites. Orbcomm run a global network of low earth orbit satellites that perform services such as Internet of Things (IoT), Machine 2 Machine (M2M) communications, asset tracking, utilities telemetry, government communications and much more. The signals can be received at around 137 MHz.

In the video he explains how the private client data is encrypted, however it is possible to at least see the encrypted data coming down, and decode some of the data management information such as the transmitted uplink frequencies using a program called Orbcomm Plotter. Ultimately, the data available is quite boring to monitor, however decoding these satellites is still an interesting exercise.

Decoding Orbcomm Satellite Transmissions Using Software Defined Radio

Explaining the 9A4QV V-Dipole Design for Receiving 137 MHz Weather Satellites

Back in 2017 we posted about Adam 9A4QV's simple V-Dipole antenna design which works very well for receiving NOAA and Meteor weather satellites at 137 MHz. This type of antenna is a lot easier to build compared to a QFH or turnstile, and it results in good performance if built and set up correctly. Over the years he notes that he's received a number of questions asking to clarify the design and so he's uploaded a YouTube video which explains the built and dimensions of the antenna clearly.

137 MHz WX-SAT original 9A4QV V-dipole antenna

SSTV from the International Space Station Scheduled for Dec 24 – Dec 31

Thank you to Maksim for submitting news that the International Space Station (ISS) will be transmitting Slow Scan TV (SSTV) in late December to celebrate 20 years of amateur radio operations onboard the space station. The ISS periodically transmits SSTV images during special events throughout the year. You can keep up to date on the ISS SSTV schedule on the ARISS-SSTV site.

An ARISS Slow Scan TV (SSTV) event is scheduled from the International Space Station (ISS) for late December. This will be a special SSTV event to celebrate the 20th anniversary of ARISS operations on the ISS. The event is scheduled to begin on December 24 and continue through December 31. Details to follow later. Dates are subject to change due to ISS operational adjustments.

With an RTL-SDR and a simple V-Dipole from our RTL-SDR Blog V3 antenna kit it is possible to receive these images when the ISS passes over. ISS passes for your city can be determined online, and the SSTV images can be decoded with a program like MMSSTV.

An example SSTV image from the last ISS SSTV event
An example SSTV image from an SSTV event held in previous years.

FengYun-2H/G Geostationary Weather Satellite Now Decodable with 120cm Dish (Europe to Australia Coverage)

Hot on the heels of the GOES-13 weather satellite decoder that we posted about a few days ago, @aang254 has just released a new RTL-SDR compatible decoder for the FengYun-2H, 2G and possibly 2E geostationary weather satellites.

The FengYun-2 line of weather satellites are the Chinese equivalents to GOES, and they are positioned to cover parts of Europe, Africa, the Middle East, Asia, Russia, and Australia. So this is another geostationary weather satellite now available to Europeans which broadcasts in the L-Band at 1687.5 MHz. And unlike the weaker GOES-13 L-Band downlink, the FengYun-2 downlink is much stronger which means that reception with a 120cm satellite dish should be possible. We note that it has not yet been confirmed if the typical 90-100 cm WiFi dishes used with GOES-16 and 17 will be big enough to work. @aang254 writes:

Yesterday I successfully decoded the S-VISSR downlink from FengYun-2H thanks to a recording by @MartanBlaho. It is stronger than PDR on EWS-G1 (see Zbychu's signal twitter.com/ZSztanga/statu) meaning it should (untested) be doable with a 120cm (or smaller but no confirmation again) dish instead of 180cm.

It covers parts of Europe, Russia and down to Australia. FY-2G and FY-2E (no confirmation for this one yet) are also decodable in the same way. I released an early decoder, that currently is not suitable for automated setups but allows getting images already. A later version (that should come soon-ish) will allow live decoding / autonomous setups in a similar fashion to other satellites.

Also, the res is 2km/px on VIS and 8km/px on IR, so half that of GOES-13 with similar-ish coverage (Europe is less visible though).

(also forgot to say but the bandwidth is under 2Mhz, allowing a rtlsdr to be used)

https://github.com/altillimity/S-VISSR-Ingestor

FengYun 2H (Left) / 2G (Right) Coverage
FengYun-2H Image Courtesy of @ZSztanga and inverted by @petermeteor

Information about Receiving the GOES-13 Weather Satellite (Europe Coverage with 1.8m Dish)

For some time now many weather satellite enthusiasts have enjoyed the ability to relatively easily receive live high resolution images directly from the GOES-16, GOES-17 and GK-2A geostationary satellites (tutorial here). However, while much of the world can see at least one of these satellites, European's have been left out.

What may be of some interest to Europeans is that the older GOES-13 (aka EWS-G1) satellite was repositioned in February 2020, and it can now be received in Europe (as well as Africa, the Middle East, Asia, Russia and West Australia) until at least 2024 when it will be replaced.

The important catch however is that GOES-13 is not broadcasting the same easy to receive LRIT/HRIT signals that the other satellites use. The signal is still in the L-Band at 1685.7 MHz, however it is called "GVAR" and it is much weaker and uses 5 MHz of bandwidth. For GOES 16/17 and GK-2A a 1m WiFi grid dish, LNA and RTL-SDR was sufficient, but for GOES-13 you'll need a much larger 1.8m dish, and a wider band SDR like an Airspy. The big dish requirement significantly increases the reception challenge.

We also note that the decoder is being developed by @aang254 and u/Xerbot and it is not yet publicly released. However, they do intend to release it soon. Update:

Over on his blog Carl Reinemann has been collecting some useful information about GOES-13 reception. Over on Reddit u/derekcz has also created a post with some useful information. We've also been talking to @ZSztanga in Poland who has been testing this satellite out, he wrote:

My hardware is: 180cm prime focus dish, with a custom cantenna (120mm diameter). I'm using the SAWBIRD GOES LNA. I will be switching to the + version, because the setup is still lacking a few db SNR. The SDR is the one I use for HRPT: the airspy mini

I found that the USB connection on the airspy generates a lot of noise, so I removed the USB cable, by moving the airspy to the laptop. I use 2m of CNT-400 coax and it works much better now. I get about 2 db SNR more. Thought you might find it interesting.

@ZSztanga's GOES-13 Reception Setup, with 1.8m dish.

We note that there is some interesting differences with GOES-13 images. Since the image is less processed, it is higher resolution (a full resolution image can be found on this Reddit post), as well as not cropped, meaning that the Earth's atmosphere is visible. Please also follow @ZSztang on Twitter for more images.

Happysat Reviews the QO-100 Bullseye LNB

Thank you to Happysat for reviewing the QO-100 Bullseye LNB which we have available in our store, eBay and Aliexpress. The Bullseye LNB is an ultra stable TCXO (temperature compensated oscillator) based LNB which makes it very good at receiving the narrowband signals on the QO-100 amateur geostationary satellite.

Standard LNBs that are sometimes used for QO-100 are not designed for narrowband signals and hence do not have temperature compensated oscillator which can result in the signals drifting in frequency significantly as the ambient temperature fluctuates. Happysat also notes that the extra stability seems to have increased signal strength on the more wideband DATV reception as well.

First test's on Es-Hail Narrow SSB transponder compared to my old regular sat-tv LNB clearly is showing more signal stability overall.

It does need some time for both the tuner and LNB to get stable, but that's only a few minutes.

Weather conditions shows less "drifting" of the pll where the old LNB was very sensitive of temperature changes, clouds before the sun did have immediately effect on the signal stability.

Some days with storms reception was impossible on SSB Narrow band.

Winter is coming over here so it gets a lot colder and more storms, but I don't expect any problems with this LNB.

Wideband testing DATV reception also shows a more stable signal although its a wider signal then narrowband, it also did increase the signal, e.g. a signal lock happens much faster.

More information about Happysat's setup and his use of the Bullseye QO-100 LNB can be found on his QO-100 website.

Other reviews of the Bullseye LNB include a YouTube video from TechMinds and F4DAV's in depth review on his website.

The Bullseye LNB for QO-100

New GOES Weather Satellite Bundle from NooElec

NooElec have recently released for sale a GOES geostationary weather satellite reception bundle which includes a parabolic grid dish, feed, GOES LNA and RTL-SDR dongle. The bundle should be usable for the GK-2A satellite, as well as HRIT from polar orbiting satellites, although for HRIT you'll need some way to motorize or hand track the satellites.

Typically to receive GOES a 2.4 GHz WiFi grid dish has been used in the past. While the mismatch between 2.4 GHz and the 1.7 GHz used by GOES doesn't cause too much trouble, the dish provided by NooElec has a feed optimized for the 1.7 GHz which should make receiving the signal easier. The bundle also comes with their SAWbird+ GOES LNA, one of their always ON bias tee E4000 tuner based RTL-SDR dongles and a roll of 10m LMR400 cable.

The bundle is currently available on Amazon USA priced at US$179.95. Canadian customers can also order from Amazon.ca for CDN$259.95. Amazon shipping is free within the USA, however shipping this overseas will cost at least US$100 extra due to the weight + additional import fees. That said, the coverage area of GOES is mostly only for the USA, Canada and South America.

If you're interested in GOES or GK-2A satellite reception we have a tutorial written here.

NooElec GOES DIsh
NooElec GOES Bundle Data