Category: Satellite

André shares his QO-100 Ground Station and HF/VHF/UHF Station

Thank you to RTL-SDR.com reader André for submitting and sharing with us his QO-100 ground station setup. The setup also includes antennas and equipment to receive HF and VHF/UHF. His setup can serve as an example of a well set up permanent installation.

André's set up consists of a 1.8 meter prime focus dish, Raspberry Pi 4, GPIO connected relay, Airspy R2, Ham-it-up upconverter, coaxial relay for switching between Mini-Whip and Discone Antenna, and FM bandstop filter and a power terminal rail block. The Airspy R2 is used for HF/UHF/UHF reception and the antennas and upconverter are all controlled via a web connected relay system. All equipment is enclosed in an outdoor rated box, and André notes everything has been working well from temperatures range from -10C to 35C.

Inside the satellite dish feed is housed an Adalm Pluto SDR, and a wideband LNA and a USB to LAN converter with power over Ethernet. A small log periodic Yagi serves as the feed. In order to work the wideband DATV band on Qo-100, André' swaps out this feed for a custom feed and brings the PlutoSDR indoors where it is connected to a 120W Spectran Amplifier and modulator.

For the full writeup of his setup, we have uploaded André's document here.

André's ground station setup for QO-100 and HF/VHF/UHF

Saveitforparts: Receiving Images from the new Russian Satellite Meteor M2-3

A few days ago we posted about the successful launch and deployment of the latest Russian Meteor M2-3 weather satellite. The satellite is currently actively transmitting LRPT weather images.

Over on his YouTube channel, "saveitforparts" has uploaded a video showing how he received images from the new satellite using his RTL-SDR. His method involves first recording the signal pass on a Raspberry Pi with rtl_fm, and then passing that wav file into SatDump for decoding and image generation.

We note that it is also possible to directly live decode the pass using SatDump, however a Raspberry Pi may be a little too slow to run the GUI version of SatDump. Instead you could use rtl_tcp on the Pi and run SatDump on a networked PC, or simply run the RTL-SDR and SatDump on the PC or a more powerful device like an Orange Pi 5.

Ultimately he experiences some unresolved problems with the decoding process, but is able to end up with a decent image.

Grabbing Images From New Russian Satellite (Meteor M2-3)

Meteor M2-3 Now In Orbit and Transmitting Weather Images

Meteor-M satellites are Russian owned weather imaging satellites that are in polar orbit. They transmit images to earth in the LRPT format at 137 MHz, making them almost as easy to receive as the older NOAA APT satellites. Unfortunately all prior Meteor M satellites have suffered an early ending or partial ending to their mission from technical faults or micro-meteorite collisions.

However, on June 27th 2023 the latest Meteor M2-3 satellite was successfully launched on a Soyuz-2 and has been reported to be already transmitting LRPT images of the earth.

Soyuz-2 Launch of Meteor M2-3 and 42 Cubesats

To receive images from the Meteor M2-3 satellite you will need an appropriate 137 MHz satellite antenna such as a v-dipole, Turnstile or QFH. An RTL-SDR or any similar SDR can be used as the receiver. 

These days, the easiest software to use to receive Meteor M2-3 is probably SatDump, whose Windows and Android binary releases can be downloaded from the GitHub Releases page. Linux users can follow the build guide in the SatDump Readme. We note that we've found the SatDump GUI to run well on an Orange Pi 5, which makes this a good portable solution too. 

To determine when the satellite is over your location you can use satellite tracking software such as Gpredict on Linux and Mac, or Orbitron on Windows. (For Orbitron, remember to run the software as Administrator, and to update the TLEs so that the Meteor M2-3 weather.txt TLE tracking data is downloaded). 

More information about Meteor M2-3's operational status can be found on Happysat's page.

Over on Twitter we've already seen various Tweets about successful reception.

@aang254, the author of SatDump has also noted that he is working on finalizing projections for Meteor M2-3 and this should be ready to use in SatDump shortly.

We also note that a Meteor Demodulator has also now just been added to SDR++.

Another interesting fact is that along with Meteor M2-3 the UmKA cubesat was launched will transmit astronomical images at 2.4 GHz. To receive this, you will most likely need a 2.4 GHz WiFi dish, and also a motorized tracking system to track the satellite as it fly's overhead. Decoding of this is already supported in SatDump according to the programmer.

An RTL-SDR telemetry decoder for the soon to be launched MRC-100 PocketQube Satellite

Thank you to Zoltan Doczi (HA7DCD) for submitting news about the MRC-100 Hungarian PocketQube Satellite that is scheduled to launch on a Falcon 9 on June 12. A PocketQube is smaller than a standard CubeSat as it is sized at only 5x5x15cm. Zoltan notes that the MRC-100 is the successor to the SMOG-1 satellite which we posted about back in March 2021. The satellite is named to honoring the 100th year anniversary of the HA5MRC Ham Radio Club at the Budapest University of Technology.

To help with decoding the Telemetry on the satellite an RTL-SDR based telemetry receiver was created by Peter and Miklos, and Levente HA7WEN has created an installation script for Raspberry Pi's and Linux PC's which installs OpenWebRX along with the satellite receiver software.

The satellite should be receivable with a simple satellite antenna, such as a handheld Yagi, Turnstile, Dipole or quadrifilar-helix antenna. It will be transmitting telemetry at 436.720 MHz. If you have a dish and tracking equipment for it, there is also a high speed downlink at 2267.5 MHz. Like SMOG-1 the satellite carries a sensor that is designed to measure human caused electromagnetic pollution. It also carries a camera and an AIS receiver for tracking marine vessels.

The MRC-100 CubeSat

TechMinds: Receiving and Decoding Packets from the GreenCube Cubesat Digipeater

GreenCube is a CubeSat by the Sapienza University of Rome, and it is designed to demonstrate an autonomous biological laboratory for cultivating plants onboard a CubeSat.

While this is an interesting mission in itself, for amateur radio operators there is another interesting facet to the satellite. Unlike most CubeSats which are launched in Low Earth Orbit (LEO), GreenCube was launched higher in Medium Earth Orbit (MEO) which provides a larger radio reception footprint over the earth. The satellite also contains a digital repeater (digipeater) at 435.310 MHz, which allows amateur radio operators to transmit digital radio packets up, and have the satellite repeat the packet back over a wide area footprint on earth. 

Over on his latest video, Matt, from the TechMinds YouTube channel shows us how to receive and decode the packets from the GreenCube digipeater. In his demonstration Matt uses an SDRPlay RSPdx as the receiver, SDR++ as the receiver software, SoundModem as the packet decoder, GreenCube Terminal for displaying the messages, and GPredict for tracking the satellite and compensating for the doppler effect. He also notes that while a directional antenna on a motorized tracker is recommended, he was able to still receive packets with his omnidirectional terrestrial antennas without much issue.

RECEIVING AND DECODING GREENCUBE CUBESAT

DeFli: A Decentralized Network of RTL-SDRs on the Blockchain for UAV and Satellite Operators

Recently we came across a new project called DeFli and DeSky, which appears to be plans for a decentralized network of RTL-SDRs. The goal of the project is to provide decentralized access to ADS-B and satellite data through the use of RTL-SDR ground stations. The RTL-SDR ground stations upload their data to the DeFli servers and in return ground station hosts receive compensation in DEFLI tokens via the DeFli blockchain.

From the website it appears they are focusing on selling the data to UAV and satellite operators, but there seems to be no reason why it couldn't be used for other purposes too.

The use of crowd sourced RTL-SDR data is nothing new, with successful ADS-B aggregators like FlightRadar24.com and adsbexchange.com already in operation. Projects like SatNOGs also exist which crowd source satellite data. Not to mention other RTL-SDR and radio data aggregators like marinetraffic.com for Marine AIS, amateur.sondehub.org for Amateur Radio Balloons, aprs.fi for APRS, and airframes.io for ACARS, VDL, HDFL and SATCOM data. However, this is probably the first radio data aggregator to incorporate blockchain concepts for host rewards.

In a Reddit Post (now removed but cached on Google), the creators wrote:

There is clearly an appetite from a large number of Helium Hotspot owners to utilize their hotspots for other projects with a view to getting a better ROI on their investment. That being said, I believe it is absolutely just and fair for Nova & the Foundation to take steps to prohibit the LoRa specific hardware from being used by competing projects both from a commercial perspective and also regulatory. Our personal belief is that Nova/Foundation should operate Helium Network as a NaaS and allow these newer "players" to piggyback on the equipment without compromising the regulatory side of things.

From an industry perspective there is of course a frustration at an awful lot of under-used/under-utilized hardware, specifically the CPU modules that remain in short supply, thus limiting the expansion capabilities of a hardware based network.

Likewise whilst Helium IoT paved the way for decentralized networks to become a "thing" there is also the counter-argument now that actually it is incredibly difficult to build a hardware based network because of the growing disdain. Now obviously part of that is linked to failed projects like MXC, Planetwatch and WeatherXM as well as dubious projects like RevoFi.

That brings me on to our project- DeFli (defli.org). I am not going to extol the virtues of the project, all I am going to give is a very brief "blurb". We are building a decentralized network of ground stations for unmanned aircraft to communicate with (to satisfy new legislation) and which will form the basis of an advanced traffic management system.

A "ground station" can be built from any Helium Hotspot without affecting the performance, nor do we utilize the LoRa Concentrator (ADS-B is broadcast over the 1090MHz frequency). To achieve dual "mining" it is simply a case of running DeFli in a Docker Container (can be viewed on our Github) and adding a USB RTL-SDR receiver.

WARNING: As with anything cryptocurrency related, do your own research first before putting any of your own money in. This project could very well be a scam, or it could just be a project in the early stages of getting started.

DeFli Network Homepage

A Satellite Listening Journey

On his Medium.com blog, Mohsen Tahmasebi has posted an article about his journey into listening to satellites which started with his acquisition of an RTL-SDR Blog V3 dongle. The article begins by explaining his motivations for receiving satellites and how difficult hobbies like this are to get into in his home country of Iran. Despite the challenges he tasted success when he was able to receive NOAA APT signals on his second attempt using the included portable dipole antenna in a V-dipole configuration. Shortly after Mohsen was also able to receive Meteor-M2 LRPT.

Mohsen then built a more permanent V-dipole out of copper rods and optimized his antenna using NEC simulation software, finding that adding a reflector significantly improved reception. He then moved on to building a slightly more complex Turnstile antenna, which yielded even better results and allowed him to explore CubeSats at 435 MHz and contribute to SatNOGS. Finally, Mohsen ordered a Bullseye LNB and using a homemade bias tee, he received the QO-100 amateur radio transponder.

Overall, Mohsen's journey demonstrates that there is a lot of fun and learning available from internationally available satellites even in a country where equipment is hard to come by.

Mohsen's First Permanent V-Dipole for NOAA APT Reception

Receiving Russian Satellite TV from the Express AM8 Satellite and watching the Hacking and Jamming Attempts

Since the Russian invasion of Ukraine, the EU has banned the broadcast of Russian TV channels. This is caused Russia to move their satellite broadcasts from internationally owned satellites, to their own "Express AM8" geostationary satellite.

The Russian satellite can be received from Europe and parts of South America. What's interesting in particular is the hacking and jamming attempts going on on this particular satellite. These breaches are likely to be from individual people or by the Ukrainian Ministry of Strategic Communication. An example of a hack by Ukrainian Ministry of Strategic Communication on 5 January 2023.

Express AM8 transponder 11647V was hacked today at 6:30 PM by Ukrainian Ministry of Strategic Communication. A New Year's address by Ukrainian President V. Selensky was shortly broadcast in Ukrainian on all program positions of the T2-MI transponder.

Express AM8 hacked by Ukraine to broadcast the New Years address by Ukrainian President V. Selensky

Alex 'Happysat' has written to us with the following information. The full guide to receiving TV from the satellite, and information about the satellite and signals and modulations used on the satellite is on GitHub at https://github.com/happysat/Express-AM8.

You may know that here in Europe a number of controversial Russian, Syrian and Iranian (news) channels are not allowed to be broadcast due to sanctions against Russia (everything) and Iran (Press TV).

The Russians moved most of the channels (Rossiya 24, RTR Planeta, NTV Mir, Perivy Kanal, Press-TV) to their own satellite Express AM8 some time ago.

Since it is not a normal DTH satellite such as Astra or Hotbird, everything happens there (jamming / hacks) which is interesting for many (dx) viewers.

Because it is relatively easy to receive in Europe and parts of South America, I have created a GitHub website with some useful tips and tricks.

Not only in terms of content, but also the technical side of it, the different modulations broadcast techniques T2-MI (unfortunately gone for a while after the hacks…) but also just old-fashioned DVB-S signals, Telemetry and some transponders (only symbol rate lower than >2000ks) are even without the need for a satellite receiver.

For example with an SDR radio and the AM-SAT program what the radio amateurs use on Eshail2.

And that a '14 west setup' can easily be made, which does not have to be expensive at all.

This is the website https://github.com/happysat/Express-AM8/blob/main/README.md

Examples of jamming on Russian geostationary TV satellite Express AM8