Category: SDRplay

Cloud-SDR Releases New Client and Server Software for the RTL-SDR

Cloud-SDR is a company that aims to make using SDR over the cloud/network/internet easier. It allows you to set up a remote SDR server that you can access from anywhere. Previously Cloud-SDR was still in development, but now we recently received mail from Cloud-SDR programmer Sylvain that the client and server software has just been released for the RTL-SDR. It appears that it also currently supports the Airspy, BladeRF, SDRplay and PerseusSDR.

The email reads:

I am pleased to inform you that we have just released two softwares compatible with your devices :

  • The Cloud-SDR free client, a windows + Linux (to be released soon) client able to run locally RTL-SDR devices (check the news/turorials, we have featured several times dongles from your blog)
  • The Cloud-SDR streaming server (codenamed SDRNode) , a windows + Linux (to be released soon) multi-user configurable streaming server.

SDRNode is a commercial software but an evaluation version is already available. Both softwares can be downloaded from our store after registration.

Source code for the drivers are already released as open source software through our GitHub repo: https://github.com/cloud-sdr

You can find more details here :

The Cloud-SDR Network
The Cloud-SDR Network

To download the software you must register an account with them at https://store.cloud-sdr.com/my-account. The client is free but the server costs 110 euros for personal and hobby usage, although a 30 day trial version is available. Currently only the Windows Client and Server are available, but they write that Linux should be available soon.

We tested the software out with an RTL-SDR V3. The client installation process was a simple wizard and after installation we launched the Cloud-SDR client by opening the shortcut “cSDRc” in the Start Menu. We found that the hardware needed to be plugged in first for the client to recognize it. The client is basic, but can already demodulate USB/LSB/CW/AM/FMN without trouble. It also has some interesting features:

  1. Dual channel receiver: RXA and RXB are two totally independent receivers;
  2. Geographic integration: Display on map beacons, ADS-B reported airliners, known HF broadcast stations or any geo-localized information coming from the SDRNode server;
  3. GPS compatibility: plug a GPS receiver to your computer and track your location on the map, record signals with your position for later processing (coverage mapping etc.); display the UTC time;
  4. Digital Terrain Elevation: See the terrain elevation around your position, or in the direction of the antenna directly on the map (requires to download the free SRTM3 files from NASA, with 90m resolution);
  5. MP3 audio recording: record to mp3 the demodulated streams to reduce disk requirements;
  6. Chat with other users connected to the SDRNode Group: when used as a remote client for the SDRNode streaming server, you can interact with other users with messages or station spotting;
  7. Time-domain analysis: the MSR mode enables analysis of any sub-band and displays in real time the time domain signals of the selected spectrum portion. This sub-band can also be recorded (with geographic position if GPS is connected) and processed with provided MATLAB®.
The Cloud-SDR Client Software
The Cloud-SDR Client Software

Next we tested the evaluation version of the SDR-Node server software on a remote laptop with an RTL-SDR connected. Again installation was easy, just follow the wizard after ordering the evaluation version. SDR-Node installs itself as a Windows service which starts up automatically on boot. To set up the Node we followed the guide shown in the video below. To connect with the client you need to know the IP address of the remote computer, the port is 8080, and the certificate is displayed on the server PC SDR-Node dashboard. We note that we also had to disable the Windows firewall to get it to connect, but it should be possible to also add SDR-Node to the firewall whitelist.

Using the SDRNode wizard

When streaming it appears that only 1/4 of the SDR sample rate can only be sent over the network. There are also compression options which can be used on slower networks or the internet to reduce bandwidth. Using the interface while in network mode was slightly laggy, but the waterfall and audio was smooth.

Overall everything worked as expected and it looks to be a very useful tool. More information is available at cloud-sdr.com. Some already existing alternative remote SDR streaming software that supports the RTL-SDR includes rtl_tcp, the SDR Console V2 server, OpenWebRX and ShinySDR.

Comparing the RSP1 and RSP2 on VLF, LF and AM BC Reception

Over on YouTube user Mile Kokotov has uploaded two new videos that show both the SDRplay RSP1 and RSP2 receiving VLF, LF and AM BC signals. The SDRplay RSP1 is a 12-bit SDR that can receive from about 10 kHz – 2 GHz. Recently the RSP2 was released which is an upgrade over the RSP1 with additional filters and features. On this blog we did an initial review of the RSP2 and found mostly improved performance over the RSP1.

Mile writes about the signals he receives:

Antenna on RSP2 is connected to its Hi-Z port.

Here are some information about signals in this video:

60 kHz Time signal from NPL is a radio signal broadcast from the Anthorn Radio Station near Anthorn, UK.
The signal, also known as the MSF signal is broadcast at a highly accurate frequency of 60 kHz and can be received throughout the UK, and in much of northern and western Europe. (But I am receiving it in Macedonia) The signal’s carrier frequency is maintained at 60 kHz controlled by caesium atomic clocks at the radio station.

77.5 kHz Time signal is German DCF77 longwave time signal and standard-frequency radio station. The highly accurate 77.5 kHz carrier signal is generated from local atomic clocks that are linked with the German master clocks.

On 295 kHz there is NDB (Non directional Beacon) from Alexander The Great Airport near Skopje (about 80 km from my home)

On AM Broadcast Band (530 kHz – 1620 kHz) you can see how many AM stations are on the spectrum display (with 9 kHz raster) receiving here at my home with Mini-Whip antenna which is only 10 cm long!

More information you can find on my web-page: http://www.qsl.net/z33t

The first video shows reception with a Mini-Whip, and the second with a Delta Loop. We don’t see much difference in reception between the RSP1 and RSP2 in these videos but viewers with more sensitive ears may be able to tell us if they notice any differences.

SDRplay RSP1 and RSP2 receiving VLF LF and AM BC with Mini-Whip

SDRplay RSP1 and RSP2 receiving 60 kHz and 77.5 kHz Time signals in Macedonia

Some More Reviews of the SDRplay RSP2

Two days ago the RSP2 was released for sale as we released a review of a pre-production unit that they sent us. Since then there have been some more review that have come out from other users who had a review unit.

Hamradioscience.com have released a good review of the RSP2 along with a video. The author writes how he’s impressed with the additional shielding, the software switchable antennas and the bias tee. Like in our review he also tested the RSP2 bias tee with the Outernet LNA and found good results. He notes that the RSP1 and RSP2 are very similar in terms of RF performance, but writes that he noticed times when the RSP2 seemed to be more sensitive or exhibit a lower noise floor than the RSP1.

SDRPlay RSP2 First Look

On YouTube user Laboenligne.ca reviews the RSP2 and also has a live Skype interview with Jon the head of marketing at SDRplay. Jon gives a good overview of the new features and some applications that they could be used for.

NEW SDRplay RSP2 SDR receiver - Interview with Jon Hudson

Over on NN4F.com Paul Jones also reviewed his RSP2. He was very impressed with the performance of the Hi-Z port, the performance of the BCFM notch filters and the stability of the TCXO.

The author of swling.com has also released his review and he too was impressed by the improvements.

On a related note the RSP1 is now for sale for black friday at HamRadioOutlet for only $119.95 USD.

SDRPlay RSP2 Release Announcement and Review

Today SDRplay have just released their newest software defined radio – the Radio Spectrum Processor 2 (RSP2) which is the successor of the RSP1. The RSP2 costs $169.95 USD, and the older RSP1 is still for sale at $129.95 USD. There is also the “RSP2pro” model which is an RSP2 in a metal enclosure, and this sells for $192.95 USD.

The RSP2 has nearly the same base specifications as the RSP1 (12 bit ADC, 10 MHz bandwidth, 10 kHz – 2 GHz range), but now comes with additional features and enhancements such as a software switchable BCFM and BCAM notch filter, TCXO, multiple antenna ports, HF optimized Hi-Z antenna port, clock in and out ports, better shielding and can also now tune down to 1 kHz.

It is available for purchase at sdrplay.com/rsp2 (Worldwide), HamRadioOutlet.com (USA) and ML&S (UK).

The announcement reads:

SDRplay Limited has today announced the launch of a second Software Defined Radio product – the RSP2.

Building on the popularity of our first product, the RSP1, we have now launched the RSP2. The RSP2 delivers a significant number of additional features which result in a higher spec for specialist amateur radio users as well as benefits for additional scientific, educational and industrial SDR applications.

Here are the main additional features of the RSP2:

  • 10 built in front-end pre-selection filters, with substantially enhanced selectivity
  • Frequency coverage extended down to 1 KHz
  • Software selectable variable gain Low Noise Preamplifier
  • 2 x SMA Software Selectable 50Ω RF ports (1.5 MHz – 2 GHz)
  • 1 x High Impedance RF port (1 kHz – 30 MHz)
  • Built in software selectable MW /FM notch filters
  • Highly stable 0.5PPM TCXO trimmable to 0.01PPM
  • 24MHz Reference clock input / output connections
  • 4.7V Bias-T option (on one of the software selectable antenna inputs)
  • RF screening within a strong plastic case for the standard RSP2
  • A Rugged metal box version – the ‘RSP2pro’

When used together SDRplay’s own SDRuno software, the RSP2 becomes a high performance SDR platform. The benefits of using the RSP2 with SDRuno include:

  • Highly integrated native support for the RSP2 professional grade software based upon class leading ‘Studio 1’, free of charge
  • Calibrated S-Meter including support for IARU S-Meter Standard
  • Calibrated RF Power Meter with in excess of 100 dB of usable range
  • Best in class audio quality

Currently the RSP2 requires the use of SDRuno software, but in the coming weeks we plan to provide support for HDSDR, Gnu Radio, CubicSDR and we are working with Simon Brown to get support within SDR Console.

We believe that the RSP1 will continue to prove very popular as the lowest cost 12-bit SDR for general applications such as Short Wave Listening or for use as a panadapter and we pleased that we can now offer more choice to the growing community of RSP users.

The RSP2 is expected to retail at approximately £130 (excluding taxes) or $169 (excluding taxes)

For more information visit our website on www.sdrplay.com

The new RSP2
The new RSP2

The table below shows a comparison of the RSP1, RSP2 and RSP2pro. A datasheet can be found on SDRplay’s new RSP2 webpage.

Differences between the RSP1, RSP2 and RSP2pro.
Differences between the RSP1, RSP2 and RSP2pro.

Introducing the SDRplay RSP2 (AV013)

SDRplay RSP2 Review

Two other reviews have already come out, one from swling.com and one from NN4F.com.

Thanks to the generosity of the SDRplay team we were fortunate enough to receive an early pre-production review model of the standard (not pro) RSP2 unit. The unit arrived a few days ago, and here we give it an initial review. In a previous review we did a comparison of the Airspy SDR, SDRplay RSP1 and HackRF. We found that the RSP1 and Airspy had similar overall performance, but that the Airspy would be better for those people who needed high dynamic range performance in strong signal environments, and that the SDRplay RSP1 would be best for people who wanted a low cost all-in-one unit with performance better than an RTL-SDR. 

The Inside

We decided to take a look inside and see how much the PCB has changed from the RSP1 to the RSP2. Judging from the two photos we can see that there is quite a significant increase in the number of components used. What was once a sparse PCB is now populated much more heavily with additional filter banks and several new switches. However, the core design of the RSP2 remains similar to the RSP1. The RSP2 uses the same Mirics MSi001 tuner chip and MSi2500 ADC chips.

The standard plastic enclosure is also now spray painted on the inside with conductive metal paint which helps by acting as a Faraday cage. This prevents interference from getting through and should be almost as good as a metal enclosure.

The conductive paint seems to be working well, as in our tests the RSP2 does not receive any signals with the antenna disconnected, whereas the RSP1 does weakly receive some very strong pager signals.

RSP1 & RSP2 PCBs
RSP1 & RSP2 PCBs
Conductive paint on the plastic case inside.
Conductive paint on the plastic case inside.

Continue reading for the rest of our review

Continue reading

New Comparison Videos from Leif SM5BSZ: Airspy vs SDRplay vs Several Other SDRs

Over on YouTube Leif SM5BSZ has uploaded two new videos. The first video shows a set up that compares the Airspy and the SDRplay RSP on several lab tests that test for dynamic range performance at various frequency offsets. The Airspy definitely shows better results, but Leif notes that the differences are fairly small. The Airspy and SDRplay are two SDRs that compete in the mid range SDR price bracket.

Smaller is better, where each value represents the amount of attenuation required before saturation
Smaller is better. Each value represents the amount of attenuation used (in dBm) that causes a 3dB loss from reciprocal mixing

As lab tests can only approximate real world performance, in the next video Leif does a HF reception comparison on a real world antenna. In this video he compares our RTL-SDR.com V3 in the special direct sampling HF mode, a Funcube Pro+, SDRplay RSP, Airspy+Sypverter, Afedri Net, and an FDM-S1. The test injects an artificial signal and combines signals from a real antenna via an adjustable attenuator. Leif adjusts the attenuator to increase the antenna signals until the test signal strength is degraded by 3dB from reciprocal mixing/overload. That attenuation setting is then recorded.

The results for the daytime and nighttime results results rank the SDR’s in order from best to worst: FSM-S1 ($400 + shipping), Afedri ($259 + shipping), Airspy+Spyverter ($218 + shipping/$149 + shipping (mini)), SDRplay ($129 + shipping), Funcube Pro+ ($155 + shipping), RTL-SDR.com V3 direct sampling ($20 incl shipping). Interestingly the performance seems to correlate nicely with the unit cost. Of course the V3 in direct sampling mode can be significantly improved by using filtering on the front end, or just by using an upconverter and quadrature mode instead.

At the end of the video Leif also shows a final ranking of the HF performance of all radios tested in his previous videos.

Night time reception SDR ranking
Night time reception SDR ranking
Daytime reception SDR ranking
Daytime reception SDR ranking
Final Ranking
Final Ranking

SDRuno Updated to V1.1: Now supports up to 2.4 MSPS for the RTL-SDR

SDRuno is the official software for the SDRplay RSP software defined radio. Recently they’ve released version 1.1 which contains various new features and bug fixes for the RSP. The SDRuno Cookbook by NN4F & KD2KOG has also accordingly be updated with information about the new features.

In addition they’ve also now increased the previous 0.96 MSPS sample rate limit which was enforced for all third party radios running via EXTIO drivers. The new limit is 2.5 MSPS (with 2.4 MSPS being the limit for the RTL-SDR). This is great news for RTL-SDR users as SDRuno for the RTL-SDR is now almost as functional as in other SDR software like SDR#, HDSDR and SDR-Console. The change log is pasted below:

Version 1.1 (11th November 2016)
Bug Fixes

  • 1.04.1 – fixed issue where highlighted filter wasn’t always the one loaded.
  • Waterfall in combo mode now flows the same direction as other modes

Updates (RSP only V1.1)

  • Tighter integration of RSP controls
  • Calibrated power measurement
  • Automatic S-Meter calibration
  • SNR meter
  • dBm scale for both SP1 and SP2 windows
  • Automatic frequency calibration
  • Support for IARU S-Meter standard
  • Zoom to VFO button in SP1 window
  • More improvements to AGC scheme
  • More improvements to DC offset compensation scheme
  • Reversed default mouse wheel scroll direction
  • Waterfall in combo mode direction can be reversed in the same way as other modes
  • Added extra frequency step sizes
  • LSB / USB filter presets back to being the same
  • USER filter preset renamed to DIGITAL
  • Support for both gain and gain reduction displays
  • Updated hardware driver – now reports as SDRplay device

Updates (EXTIO only V1.05)

  • maximum bandwidth changed to 2.5MHz
SDRuno Version 1.1 Running a RTL-SDR at 2.4 MSPS
SDRuno Version 1.1 Running a RTL-SDR at 2.4 MSPS

Mile Kokotov’s SDR Overview and Dynamic Range Explanation

Mile Kokotov (Z33T) has been working on creating an overview page of some of the most popular software defined radios and software applications. In the past we’ve featured Mile’s videos several times on our blog and his page ties all the videos together nicely with text. On his page he briefly reviews the different types of RTL-SDR dongles as well as the Airpsy and SDRplay.

One very useful page he’s put together is his explanation of the “dynamic range” concept, which is probably the most important characteristic when it comes to a radio. According to Miles description dynamic range measures the ability of a radio to “receive very weak and very strong signals at the same time, without overloading”. His page also explains how decimation in software can help improve the dynamic range without needing to improve the hardware.

Mile’s page is not yet 100% finished, so we advise you to keep an eye on it for new information.

Explaining dBFS (decibels relative to full scale)
Explaining dBFS (decibels relative to full scale)

Using a 75 Year old Marconi CR100 Radio to Control an SDRplay RSP

Over on YouTube Jon from SDRplay has uploaded a video showing how he’s used the knobs and interface from a 75 year old Marconi CR100 analogue radio to completely control an SDRplay SDR. This allows you have the feeling of tuning a vintage radio with the old fashioned knobs, whilst enjoying the features of a modern SDR.

Within the old radio enclosure they’ve managed to fit in a full Acer mini computer which runs the RSP on HDSDR. To allow the main tuning knob on the Marconi to tune the SDRplay they’ve used an Arduino controller, and an optical shaft encoder. As they intend for their hybrid to be completely keyboard-less, they’ve also added two UP/DOWN buttons to jump up and down the spectrum, buttons to choose the demodulation mode, and a new knob to control the zoom setting in HDSDR.

The project was sponsored by RS components and is intended to be used in the November 2016 Electronica event in Munich as an exhibit that celebrates the 80th anniversary of the expo. The idea is that the SDRplay-Marconi hybrid combines radio technology which would have been around during the first Electronica expo’s as well today’s modern SDR technology. There is a write up of the project available on the RS components designspark website.

SDRplayMarconiHybrid