The Latest Progress on Discovery Dish

Over on Crowd Supply we are currently crowd funding for the Discovery Dish, a system that aims to help make satellite dish based radio projects more accessible for use with low cost software defined radios like the RTL-SDR. We've recently posted an update which we pasted below.

Discovery Dish: Simplified system for weather satellite reception and hydrogen line radio astronomy

The Latest Progress on Discovery Dish

First, we want to thank everyone who has purchased a Discovery Dish! We are about two weeks into the campaign now and we’ve reached over 30% of our goal. Please help us get there by sharing the campaign with anyone you think might be interested!

Progress Report

Here are the latest updates:

  • We’ve been working on getting manufacturing of the molds and electronics ready to go once we receive funding. We’re finalizing our CAD files and double checking everything so we’ll be ready to go once the campaign ends. We put six months as our target before shipping, but we’re hoping to actually get the product out sooner than that. The main delays in the timeline will be the Chinese New Year holidays early next year and the time it will take to sea freight our bulk production runs.
     
  • For the enclosure, we’ve begun getting samples of the general electronics mounting board. It will be made out of a conductive metal which is important for grounding RF noisy electronics to the enclosure, and will also allow heat to transfer out of the enclosure via a thermal pad underneath the board. Once we get our prototypes we will share more images.
 
  • We've also began considering how we might implement a 2.2 GHz S-Band feed for the Discovery Dish. The return-loss characteristics of the feed were designed to be good at 2.2 GHz, so we probably don't need to change much of the core feed design. The main question will be if it's feasible to implement a downconverter for use with RTL-SDRs (which have a maximum frequency limit of 1.766 GHz), or if it's better to just use a HackRF for this band. Updates on our investigations will be provided as we test further.
  • We are also actively working on our rotator prototype which we hope to release next year as a companion product to the Discovery Dish in order to make reception of polar orbiting satellites easier and more accessible. We don't want to release too much information on the rotator at the moment as things could still change a lot, but currently we are ordering samples of some custom parts that we need to test a production version. We are also developing the microcontroller firmware so that it will be compatible with the EasyComm II rotctl protocol.

Customer Questions

Finally, we’ve received a few questions from customers which we’ll answer publicly below:

Inmarsat is circularly polarized. Is the Inmarsat feed circularly polarized?

Our feeds are all linearly polarized. But this actually does not matter much for Inmarsat because our dish is more than large enough for Inmarsat, and Inmarsat signals are relatively strong. Using a linear feed on a circularly polarized signal results in a 3dB loss which is relatively insignificant in this case. With a small patch antenna such a difference is significant, but not so with a larger dish.

Will this work with a SatNOGs rotator?

Yes, the Discovery Dish comes with a standard pole mount which can be used to mount it on the SatNOGS rotator arms.

What is the amplifier/filter architecture like in the feed?

The signal chain is as follows: Feed -> QPL9547 LNA -> SAW -> QPL9547 -> SAW -> SMA Output. So our feeds are dual-amplified and dual filtered.

Can the coax on the feed be swapped out for longer and lower loss coax?

Yes, the feed uses an SMA connector so you can swap out the coax cable if you like. Thicker cables may require different sized strain-relief at the end of the feed arm, though.

 

Airspy and YouLoop 2024 Black Friday Sale 20% OFF

Airspy is holding their annual Black Friday sale, this year offering 20% off their range of products. The sale is active at all participating resellers, which includes our own store where we have the YouLoop on sale for US$31.96 including free shipping to most countries in the world, instead of the usual US$39.95. Please note that due to EU VAT collection laws, EU customers must purchase the discounted YouLoop from our eBay or Aliexpress stores. 

The YouLoop is a low cost passive loop antenna for HF and VHF. It is based on the Möbius loop design which results in a high degree of noise cancelling. However the main drawback is that it is a non-resonant design, which means that it works best when used with ultra sensitive receivers like the Airspy HF+ Discovery. 

Some good reviews include the YouTube videos done by Frugal Radio where he reviews HF reception and VLF & LF reception with an Airspy HF+, and later tests it with an RTL-SDR Blog V3 using direct sampling. Techminds also has an excellent review on his YouTube channel. We also have a product release overview on this post from March 2020.

During the sale the price of Airspy SDRs and their upconverters are:

  • Airspy R2: $160.00 $135.20
  • Airspy Mini: $99.00 $79.20
  • Airspy HF+ Discovery: $169.00 $135.20
  • Airspy SpyVerter: $49.00 $39.20

FOSDEM 2024 Call for Participation: Software Defined Radio & Amateur Radio Devroom

FOSDEM (Free and Open Source Developer’s Meeting) is a yearly conference that this year will take place in Brussels, Belgium on 3 - 4 February 2024. This conference will also feature a track on FOSS-powered radio, and there will be a combined Amateur Radio and SDR Devroom.

FOSDEM have issued a call for participation and have noted that slots are still open, so please submit any proposals for talks now if you are interested in presenting. The recommended topics include:

Topics discussed in the devroom include, but are not limited to:

  • SDR frameworks and the tools that make them useful
  • New SDR-based developments in ham radio modes
  • Cellular/telecom software
  • Amateur radio operator software tooling
  • Free / Open radio hardware
  • Wireless security research
  • Entertaining wireless hacks
  • SDR & ham radio in mass and higher education
  • Satellite, spacecraft and interplanetary communication

Software-Defined Radio is the technology of enabling radio signals to be processed and generated algorithmically, typically within general purpose processors, but also within FPGAs and GPUs; Free and Open Source (FOSS) Software Radio allows these algorithms to be inspectable and improvable. With the advent of ubiquitous IoT, sky-filling satellite megaconstellations and 5G/6G as standards designed with commercial Software Radios in mind, wireless is an exploding field of interest in the FOSS realm.

Ham Radio, also known as amateur radio, is more than just a hobby orbiting the usage of radio communication – it’s a passion that merges the realms of electronics, human interaction, and communication. At its core, ham radio is about establishing connections: with people, with technology, and with the world at large. It is a free and open community effort at heart!

Lab401: HackRF on Windows YouTube Tutorials

Over on the Lab401 YouTube channel, 'RocketGod' has uploaded three videos that are various tutorials for the HackRF on Windows. The first video covers the basics like installing software and shows how to decode pager signals with PDW.

The second video shows how to decode police transmissions, car key fobs, use rtl_433, and how to use Universal Radio Hacker to capture and analyze signals. 

The third video is not yet released, but is due to premier on YouTube in 10 hours from the time of this post. In that video RocketGod will show how to install and use DragonOS, and how to install and use SDR Trunk which turns the HackRF into a police scanner. Finally, he will demonstrate SDR Angel and show it decoding ADS-B signals from aircraft to show you live flight tracking data.

Part 1 is embedded below, and Part 2 and Part 3 are linked here.

ROCKETGOD's HackRF One guide - part 1/3 Basics, Windows apps, setting up - LAB401

SDRSharp Controller Plugin: Control SDRSharp via any USB Hardware Controller

Thank you to Alan De Windt who has submitted news about the release of his latest SDR# Plugin called "SDRSharp Controller". Alan writes that this is a plugin that is "similar to the existing SDRSharp Net Remote plugin by Al Brown but which allows simpler physical controllers to be built". 

With this plugin you can create a key/value text mapping to turn any USB control device into something that can control various settings in SDR#. The controller hardware could perhaps be anything from a USB knob controller to a gamepad.

Alan also provides an example of a hardware USB knob controller that he's created which works together with the plugin. On the linked page he shows the components required to build the controller, how to wire up the circuit and provides the Arduino code.

A custom SDR# controller knob

Saveitforparts: Building an L-Band Satellite Antenna out of an Umbrella

Over on his YouTube channel "saveitforparts" has uploaded a video where he uses an umbrella, pin tin and tin foil tape to create a simple dish antenna for receiving GOES, NOAA and METEOR HRPT satellites.

The full build consists of an umbrella covered in tin foil tape, a helical wire feed on a pie tin, a filtered LNA, an RTL-SDR and an Android phone running SDR++. While he did have initial success at receiving, he soon decided to swap out the helical wire feed for a PCB linear feed instead which worked much better as helical feeds can be very difficult to get right.

Through the video saveitforparts goes over the failures he had, in the end noting that it's not a great antenna, but it's something that can be used in a pinch.

We've also seen the umbrella satellite dish used a few times in the past, where here it was used for NOAA APT reception, and here for Hydrogen Line radio astronomy.

We also want to remind readers that we are currently Crowd Funding for our Discovery Dish, which will be a low cost way to get into L-band satellite reception.

Can I Get Satellite Data With An Umbrella?

TechMinds: One Antenna Four Receivers with an Active Distributor

Over on his TechMinds YouTube channel, Matt has uploaded a video where he reviews a US$20 active antenna distributor that he purchased on Banggood / Aliexpress. An active distributor allows you to use one antenna with multiple radios, without incurring any distribution losses, which for passive splitters are typically at least 3dB per split. It does this by using an amplifier before the splitter. This is especially useful if you have a wideband antenna like a Discone.

The product comes with a built in battery, or it can also be powered via USB-C. Unfortunately it has a rather restrictive frequency range, only covering 100 kHz to 300 MHz.

Later in the video Matt shows the internal PCB of the product, showing its battery and circuitry.

ONE ANTENNA - FOUR RECEIVERS RF ACTIVE DISTRIBUTION

DragonOS: Tracking ADS-B, UAT, ACARS, VDL2 with TAR1090 and a KrakenSDR

Aaron who created and maintains the DragonOS SDR Linux distribution has recently uploaded a new video where he uses a KrakenSDR to simultaneously receive and decode multiple aircraft tracking, telemetry/messaging signals including ADS-B, UAT, ACARS and VDL2.

In the video Aaron uses his WarDragon which is a Mini PC that comes preinstalled with DragonOS. It is currently available on his website for $220, or $550 including a carry case, and Airspy R2.

The video shows how to setup all the software including FlightView GUI which is a graphical user interface that allows users to manage and configure various Docker based aircraft-related services including tar1090, readsb and acarshub.

WarDragon ADS-B, UAT, ACARS, and VDL2 w/ TAR1090 + ACARS Hub (KrakenSDR, Defli optional)