SignalID: Shazam Style Automatic Signal Identification for Android

SignalID is a new Android app available on the Google Play store which offers Shazam-like radio signal identification. Just like Shazam does for music, you simply tune to an unknown signal with your SDR, play the raw audio, and let the app listen to it for five seconds. It then computes an audio fingerprint and checks to see if it knows what the signal is. 

We tested the app but unfortunately we were unable to get it to detect any signals. Please write in the comments if you have success. As it uses audio fingerprinting, the app is probably highly dependant on choosing the correct demodulator (AM/FM/SSB etc), and also the tuning and signal quality. We note that most of the signal sources seem to come from our sister site the Signal ID Wiki. Searching through the wiki is a good alternative if automated solutions fail.

However the the app is new and we expect improvements and more signals to be added in the future. Currently the following signals can be recognized: 

- RTTY (Commercial 85Hz, 170Hz, 450Hz, 850Hz, Amateur 170Hz)
- PactorI (Standard, FSP, FEC, SELCALL)
- ASCII (170Hz)
- ALIS
- Codan8580 (200Hz, 250Hz)
- CIS36_50
- CIS40_5
- CIS50_50
- STANAG 4285 (GEN, SYS3000 FEC, 8PSK, TFC, IDLE, SYS3000)
- FT4

- FT8
- WEFAX (120, 240)
- 2G ALE
- 3G ALE
- CHIP64
- APRS (Burst)
- ATIS
- Tetrapol
- POCSAG
- FLEX (2FSK)
- PSK (31, 63, 125, 250, 500)

We note that this app reminds us of a Python based signal identification app for the PC called "audio_recognition_system" which we posted about earlier this year.

SignalID: Shazam-like audio based signal identification for Android.
SignalID - Demonstration

Frugal Radio: SDR Guide Ep 4 – Antenna Basics for SDR Beginners

In this episode of Frugal Radio's series of SDR beginners guide videos he discusses some antenna basics. He shows the most common types of antennas, provides several tips to help improve reception, and shows how to properly tune antennas using online calculators.

Near the end of the video he shows our multipurpose dipole antenna kit and shows how to adjust the telescopic elements for best reception. He demonstrates that simply extending the elements to the maximum length does not result in the best tuning, rather you need to tune the element length for the frequency being received to get the best results.

2020 SDR Guide Ep 4 : Antenna Basics for SDR Beginners inc RTL-SDR / Nooelec NESDR SMArt bundle

TechMinds: Building a 3D Printed 2.4 GHz Dual Feed Helix for QO-100

The Bullseye LNB that we have in our store is great for receiving the QO-100 amateur geostationary radio satellite which is available in some parts of the world. However it cannot be used to transmit to the satellite. Over on his YouTube channel Tech Minds shows us how to build a transmit helix antenna that connects to the Bullseye or other suitable LNB, resulting in a dual feed antenna.

The antenna that was built is based on DO8PAT's "Ice Cone Feed" design. The design requires some 3D printed parts for the mount and housing, as well as a copper wire helix, metal reflector and copper matching strip. The Bullseye fits onto the back of the helix mount. Once mounted on a dish Tech Minds shows that he was able to make contact with a friend via the QO-100 satellite with good signal strength.

2.4 GHz Dual Feed Helix Antenna For QO100

Standalone Windows FengYun-3 & MetOp HRPT Weather Satellite Decoder

Back in June we posted about Alan (@aang254)'s work on porting the GNU Radio gr-hrpt decoder over to GNU Radio 3.8. More recently Alan wrote in and wanted to share the news that he has recently released standalone Windows decoders for the MetOp and FengYun-3 weather satellites.

MetOp and FengYun-3 are both polar orbiting satellites that beam back high resolution weather satellite images. Unlike the NOAA polar orbiting satellites which transmit both the easy to receive APT and more advanced HRPT signal, these only transmit a HRPT signal at ~1.70 GHz, so a satellite dish and motorized tracking mount (or hand tracked) is required. You will also need an SDR capable of receiving over 3 MHz bandwidth such as an Airspy Mini or R2. Alan writes:

I recently got FengYun decoding working after the release of my MetOp decoder a while ago. Since gr-hrpt wasn't usable for Windows user without some major hassle, I made some standalone decoders (Windows builds included in the repo) for both MetOp and FengYun.

Decoding is done by first demodulating with the included flowcharts or @petermeteor's, then processed through the decoder which does Viterbi / Differential decoding. The output then needs to be deframed by MetFy3x or any other software that can do so.

https://github.com/altillimity/Satellite-Decoders

A few images!

https://twitter.com/SamuelArmstro18/status/1285647473881513989
https://twitter.com/ZSztanga/status/1285277472284708865
https://www.reddit.com/r/amateursatellites/comments/hwhb7q/my_longest_fy3b_image_yet_i_got_up_at_430_in_the/
https://twitter.com/HA6NAB_Tomi/status/1285300023350222848
https://twitter.com/ub1qbj/status/1286734822820532224/photo/1

You can learn more about these satellites on USA-Satcom's Cyberspectrum talk and slides.

Frugal Radio: SDR Guide Ep 3 – Beginner Budget SDR Shootout

In this episode Frugal Radio explores the differences between three RTL-SDR dongles. In the video he compares a generic RTL-SDR, a Nooelec SMART and one of our RTL-SDR Blog V3 units. Initially the specifications are compared, and then he moves on to testing them on real signals with SDR#. Overall the RTL-SDR Blog V3 comes out with the highest final score thanks to it's additional features and low price.

2020 SDR Guide Ep 3 : Beginner Budget SDR Shootout (Generic vs Nooelec vs RTL-SDR v3) cheap SDRs!

TechMinds: Decoding HF ACARS HFDL with an SDRplay RSPdx

In his latest YouTube video Tech Minds shows how to decode HF ACARS (HFDL) with an SDRplay RSPdx. Tech Minds initially explains what HFDL is, and how it is typically received via special aviation radios. He goes on to show how we can decode it from home with any HF capable SDR, and a program called PC-HFDL. Finally he explains how to set up a Google Earth file that can display the aircraft location data that is provided in some HFDL messages.

Decoding High Frequency Data Link - HF ACARS HFDL

SignalsEverywhere: SDRTrunk P25 Police Scanner Tutorial with two RTL-SDRs

Over on YouTube Sarah from SignalsEverywhere has uploaded a new tutorial video showing how to use two RTL-SDR dongles with the free SDRTrunk software to create a P25 Police scanner.

In the video she first shows how to install SDRTrunk in Windows and Linux, then how to install the JMBE codec required for decoding audio. She goes on to show how to import trunked system network data from a (paid) RadioReference subscription, how to blacklist unwanted talkgroups, and how to optimize operation with two RTL-SDR tuners. Finally she also shows how to set up the system manually if you don't have a RadioReference subscription.

SDRTrunk The FREE P25 Police Scanner! Windows and Linux Tutorial

Australian Teenager Exposes COVID-19 Patient Data via POCSAG Pager Network

A 15 year old Australian teenager has been accused of leaking sensitive COVID-19 patient data such as the phone numbers and addresses of people in quarantine, and conversations between health officials and doctors about COVID-19 patients. The leak occurred via a public web page that he had set up to share decoded POCSAG pager data that he received from his home.

Pagers are still typically used in many parts of the world by hospitals. It is a tried, tested and very reliable system for messaging, however most systems in the world send data out in unencrypted plain text for all to see. Anyone with a cheap scanner radio or $20 SDR and freely available software can decode every single message sent via paging from almost anywhere in a city as the signals are often extremely strong. Pagers are intended to be reserved for urgent infallible messaging, as paging is more reliable compared to mobile SMS since SMS messages do not always get through, or can be delayed by several minutes. Alternative secure communication channels such as SMS should be used for private information, however this protocol is not always followed due to the additional hassle.

The teen appears to have used either a Baofeng or RTL-SDR to receive the POCSAG pager signal available in his hometown in Western Australia. The pager signal was decoded with multimon-ng, and displayed via the PagerMon software. PagerMon creates a web page that displays pager messages in an easily readable format, and the page can be made accessible to the internet if desired. It seems that the teen is a scanner enthusiast, and did not intend to purposely leak patient data, however others found his PagerMon page and brought it to the attention of the media. His site has now been shut down, and officials have decided to shut down the pager system in favour of a double SMS system.

Some of the leaked messages via 9 News Perth
Some of the leaked pager messages via 9 News Perth

This is a story that repeats often all around the world. In the past we've seen whistleblowers report on patient data breaches in VancouverKansas, and via an art installation in New York that continuously printed out pager messages.