Tagged: rtl-sdr

Modded SUP-2400 Downconverters now Available at RXTXDX.com for $25

Last week we posted about KD0CQ’s interest check on his ready to go modded SUP-2400 downconverter. Interest was strong so the unit is now available for sale on a store he’s just set up at RXTXDX.com. The ready to go unit costs $25 USD including a 9V battery plug and F->SMA or MCX adapter.

Last year KD0CQ discovered that the SUP-2400 is a cheap $5 – $10 DirecTV (US satellite TV) module which can be hand modded into a downconverter for the RTL-SDR. A downconverter allows you to listen to frequencies above the maximum frequency range of the RTL-SDR by converting frequencies down into a range receivable by the RTL-SDR (or of course any other SDR). The modified SUP-2400 allows to you listen up to just over 4 GHz.

The SUP-2400 modification is moderately involved and requires soldering and desoldering SMD pieces, so this product is great for anyone who just wants a cheap and low cost downconverter which is ready to go. And at $25 USD it’s still very good value. Shipping within the USA is $7.75, and internationally it is about $13.50.

The modified SUP-2400 Downconverter
The modified SUP-2400 Downconverter

Listening to Astronauts on the ISS with an RTL-SDR and V-Dipole (ARISS Contact with Astronaut Paolo Nespoli)

Manuel a.k.a ‘Tysonpower’ has been using his RTL-SDR (and his Baofeng) to listen in on ARISS contacts from the International Space Station (ISS). ARISS stands for Amateur Radio on the ISS, and is a program often used by schools to allow students to contact and ask questions to astronauts on the ISS with a ham radio. It is possible for anyone to listen in on the downlink (astronaut speech) if the ISS is over your location while transmitting. The uplink however may not be able to be heard as the signal is directed upwards towards the station.

For his first try he used a Baofeng (cheap Chinese handheld) and a DIY Carbon Yagi. For the second contact he used his RTL-SDR V3, an FM Trap and an LNA4ALL on a V-Dipole antenna placed on the roof of his car. With this set up he was able to receive the downlink transmissions from 1.6 degrees to 1.3 degrees elevation.

Paolo Nespoli ARISS Kontakt mit VCP-Bundeszeltplatz - 1. August 2017

Paolo Nespoli ARISS Kontakt mit FOFM / Moon Day - 5. August 2017

Viewing Lightning RF Bursts with an RTL-SDR

Lightning produces fairly wideband bursts of RF energy, especially down in the VLF to HF frequencies. Detecting these bursts with custom radio hardware is how lightning detection websites such as blitzortung.org work.

It is also possible to detect lightning using an RTL-SDR that can tune to to HF and lower, such as the RTL-SDR V3, or an RTL-SDR with an upconverter. Over on his blog Kenn Ranous (KA0SBL) has uploaded a short post showing what lightning bursts look like on an RTL-SDR waterfall. He uses an RTL-SDR V3 to tune down to the LF – MW frequency bands and looks for wideband pulses of noise which indicate lightning.

It would be interesting to see if this type of detection could be automated with DSP so that a similar service to Blitzortung.org could be created.

Lightning Pulses
Lightning Pulses

Fixing USB Reset Problems for 24/7 rtl_433 Monitoring

Rtl_433 is an RTL-SDR compatible command line based tool for monitoring various 433 MHz ISM band devices, such as temperature sensors, weather monitors, TPMS, energy meters etc. A full list of support devices can be found on the rtl_433 Github.

Over on his blog “raspberrypiandstuff” mentions that he’s been using rtl_433 and an RTL-SDR on a remote headless Raspberry Pi to receive and monitor temperature and humidity from his weather station. From the data he’s able to produce some nice graphs that show changes over time.

However, one problem that he ran into was that the USB controller on the Raspberry Pi would sometimes hang. The only solution he’d previously found to fixing it was to physically disconnect and then reconnect the RTL-SDR. But now “raspberrypiandstuff” writes that he’s found a new solution which is to use a small C-program called usbreset.c. Combined with a bash script that detects which device the RTL-SDR is on the bus, this tool helps to automatically reset the USB on the Pi if it fails to keep the RTL-SDR logging 24/7 without physical intervention.

This may be a solution to look into if you’re experiencing similar issues with 24/7 monitoring on the Raspberry Pi. If you’re also interesting in rtl_433 monitoring, “raspberrypiandstuff” also has a post on creating a simple GUI for rtl_433.

Interest Check: KD0CQ Pre-Modified SUP-2400 Downconverters

Over on his blog KD0CQ has posted an interest check. He’d like to know if anyone would be interested in purchasing pre-modified SUP-2400 downconverters from him. We’ve posted about the SUP-2400 a few times in the past. Basically the SUP-2400 is a cheap (about $5 – $10 USD) DirecTV device which can be modified and turned into a downconverter for your RTL-SDR. A downconverter allows you to listen to higher frequencies, up to 4.5 GHz in the case of the SUP-2400 and an RTL-SDR. 

The modification involves some decent soldering skills as it involves removing some small SMD components and using wires to bridge some points. KD0CQ writes that he’s thinking of selling premodified SUP-2400 units for $20 – $25 to interested customers. If you think that you’d be interested in this please comment on his post.

SUP-2400 Circuit.
SUP-2400 Circuit.

QuestaSDR (Formerly UnoSDR) Updated: Now Supports Airspy and many new Features

Back in March Vi Vitaliy wrote in to let us know about an RTL-SDR compatible SDR program called UnoSDR that he had been working on. Vi now writes that the software has been updated, and the name has been changed to QuestaSDR to avoid confusion with SDRUno – SDRplays official software package. Vi writes:

In new version I added support AirSpy r2, AirSpy mini, Perfomance Window, Record AF, record and play iq raw data, frequency bookmarks, waterfall color scheme, change fft size, fps … calibrate options, support if converter.

The software is still in beta, and Vi would be interested in hearing any feedback or bug reports if you have any.

QuestaSDR can be downloaded from sdr-labs.com.

QuestaSDR (Formerly known as UnoSDR)
QuestaSDR (Formerly known as UnoSDR)

Receiving Outernet with a Grid Antenna and LeanDVB

Recently Luigi Freitas wrote in to us and wanted to share his fairly unique Outernet setup which is based on a Grid dish antenna, low cost SPF-5189 LNA, C.H.I.P mini single board computer generic RTL-SDR, and the open source LeanDVB decoder software.

Last month we made a post about LeanDVB, a lightweight DVB-S decoder, which with a few configuration changes can be used to also demodulate the Outernet signal. Luigi places his 2.4 GHz WiFi grid antenna (which still works for the 1.5 GHz Outernet signal) on a tripod and points it towards the Outernet satellite in his area. He connects the antenna up to a SPF-5189 based LNA, which is a 50 – 4000 MHz LNA that is very cheaply found on eBay for about $7 USD. Then a cheap generic no-TCXO $8 RTL-SDR is used together with the LeanDVB software.

In his post Luigi shows how to set up the LeanDVB software for decoding the Outernet signal by piping the output of rtl_sdr into it, and getting all the settings correct. To get the final files he then shows how to pipe the decoded packets in the Skylark decoder, and then the files can be accessed from the regular Outernet web GUI.

The LeanDVB Decoder GUI showing a successful lock
The LeanDVB Decoder GUI showing a successful lock

Showing what Solar Power Inverter Interference Looks Like

Over on YouTube user ALI6359 has uploaded a video showing what severe interference from a neighbors poor quality solar power inverter looks like on his RTL-SDR dongle. An inverter converts the DC power produced by solar panels into AC power which is used by common household equipment. Inverters typically use switching techniques to convert the power, and this can cause RF noise if the inverter is poorly designed and not shielded.

In the video ALI6359 shows strong interference all across the VHF spectrum. He also writes in the video description that the interference also occurs all over the entire HF band. He writes:

This is what happens if you or your neighbours install a dodgy quality solar power system. i am using a uhf phased array antenna facing away from the source of interferance but i am picking up very strong interferance. just touching the antenna connector of the rtlsdr is enough for the interferance to show up. i once had a HF upconverter (stopped working now) it used to show very strong interferance through the enitre HF band. the solar inverter certainly fails the part 15 FCC requirements.

In a previous post we also showed how interference from Ethernet over powerline adapters can destroy the entire HF band as well.