Tagged: rtl2832

SATSAGEN Spectrum Analyzer Software Updated: Now Supports RTL-SDR

Back in March last year we first posted about the release of SATSAGEN, and program by Alberto (IU1KVL) that allowed the PlutoSDR to work as a spectrum analyzer. SATSAGEN has recently been updated to version 0.5, and it now supports the RTL-SDR, HackRF and Simple Spectrum Analyzer hardware as well. 

Spectrum analyzer software allows you to monitor spectrum activity over a bandwidth much larger than what your SDR supports. It works by rapidly sweeping over multiple frequencies and stitching the spectrum slices together.

Some highlights of the new features include:

  • Works with:
    • ADALM-PLUTO
    • HackRF One
    • RTL-SDR Dongles
    • Simple Spectrum Analyzer series like NWT4000, D6 JTGP-1033, Simple Spectrum Analyzer, and so on.
  • Video trigger, real-time trigger, and fast-cycle feature
  • ADALM-PLUTO custom gain table and Extended linearization table for all devices
  • Transmit from raw format files
  • I/Q balance panel
  • Waterfall
SATSAGEN Interface

Installing and using RTL-SDR and GQRX on a PinePhone

Over on YouTube channel "Privacy & Tech Tips" has uploaded a video demonstrating how it's possible to run GQRX with an RTL-SDR on a PinePhone. In the video the presenter shows how to set up the screen so that GQRX is fully visible, demonstrates GQRX running, and then goes on to show exactly how to install the RTL-SDR drivers on the PinePhone.

The PinePhone is an open source smart phone that can run a full Linux distribution. A PinePhone sells for US$149.99 or $199.99 for a higher end version with more RAM and storage.

RTL-SDR On The Pinephone! Demo, Installation/Hardware

Using 50 Lines of Python Code to Decode NOAA APT Weather Satellite Images

There are already many image decoders for the NOAA APT weather satellites available, with the most common and feature rich program being the abandoned freeware "WXtoIMG".

However many people may not know how simple the APT digital signal processing code is. Over on his blog post Dmitrii Eliuseev explains how only 50 lines of Python code are required to decode an image from received APT audio. Dmitrii's post shows how a Hilbert transform is used on the APT audio which is essentially the entire decoding step. This is then followed by a for loop that calculates the pixel luminosity from the decoded data, and plots it onto an image file. 

Of course the image is only grayscale (or in Dmitrii's case he decided to use greenscale), but adding false color and various other image enhancements found in advanced software like WXtoIMG are just standard image processing techniques.

Dmitrii concludes with the following:

Interesting to mention, that there are not so many operational radio communication systems in the world, the signal of which can be decoded using 20 lines of code. The NOAA satellites are about 20 years old, and when they finally will retire, the new ones will most likely be digital and format will be much more complex (the new Russian Meteor-M2 satellite is already transmitting digital data at 137 MHz). So those who want to try something simple to decode can be advised to hurry up.

[Also mentioned on Hackaday]

Simple decoding of NOAA APT satellites in Python

FAASGS: A Setup to Build a Fully Automatic Amateur and APT Weather Satellite Ground Station

Over on GitHub stdevPavelmc has released his software called FAASGS (Fully Automatic Amateur Satellite Ground Station). FAASGS is an open source program that allows RTL-SDR users to set up a satellite ground station that tunes, record and generate images for NOAA APT weather satellites, as well as records FM amateur radio satellites. The software runs on a single board computer such as a Raspberry Pi, however in the authors own setup he uses an Orange Pi Prime board. The features include:

  • Web interface to see the next passes, the recorded ones, and details for it.
  • Receive any satellite in FM mode (SSB is possible but no there is doppler control yet, so no SSB by now)
  • Record the satellite pass and keep the audio for later.
    • APT WX audio is preserved in wav format and 22050 hz of sampling (the format wximage needs to work with)
    • FM audio satellites is preserved in .mp3 mode but with high quality settings, and other tricks.
      • The spectrogram of the audio is embedded as album art (see below).
      • The pass data and receiving station are stored in the mp3 tags.
  • Automatic decode APT images from WX sats (NOAA 15, 18 and 19)
  • For the voice FM sats we craft a spectrogram and embedd the metadata of the pass on the image
FAASGS main screen showing recordings
FAASGS screen showing an FM amateur radio satellite pass

DragonOS: Decoding FT8 on Linux with WSJT-X

DragonOS is a ready to use Ubuntu Linux image that comes preinstalled with multiple SDR program. The creator of DragonOS, Aaron, uploads various YouTube tutorials showing how to use some of the preinstalled software. This month one of his tutorials covers how to use a SDRplay RSP1A or a HackRF to receive and decode FT8 with the preinstalled software WSJT-X or JS8Call. Aaron also notes that an RTL-SDR could also be used as the SDR.

In the video he covers how to set up a virtual audio cable sink in Linux for getting audio from GQRX into WSJT-X, setting up rigctld to allow WSJT-X to control GQRX, configuring GQRX, CubicSDR and WSJT-X, and finally downloading and using GridTracker.

DragonOS Focal Receive FT8 w/ WSJT-X (RSP1A, HackRF One, GQRX, CubicSDR, GridTracker)

SignalsEverywhere: Installing and Configuring OP25 Phase 1 & 2 Digital Voice Decoder on Linux

In this weeks video Sarah from the SignalsEverywhere YouTube channel show us how to install and configure the OP25 software on a Linux machine. OP25 is a Linux based P25 digital voice decoder which works with RTL-SDR dongles. It is capable of decoding both Phase 1 and Phase 2 systems. Installation is fairly simple via an installation script, but it does take some time to install. After installation Sarah shows how to configure the software in order to properly follow a trunked P25 system. In order to help with importing talkgroup information from a premium RadioReference account Sarah has also created an automatic importer Python script which is very useful.

OP25 Installation and Configuration Tutorial | Setup OP25 P25 Phase 1 and 2 SDR Decoder on Linux Pi

GNU Radio 3.9.0.0 Released

GNU Radio is an open source digital signal processing (DSP) toolkit which is often used in cutting edge radio applications and research to implement decoders, demodulators and various SDR algorithms. Version 3.9.0.0 has recently been released. Below is part of the release text, but please see the official release post for the full list of changes

The future is not set, there is no fate but what we make for ourselves. In this very spirit, GNU Radio 3.9 packs a whole bunch of power when it comes to transforming the way GNU Radio and its ecosytem can be developed in the future.

You’ll find the release tags and signed tarballs now on github, and later on gnuradio.org/releases/gnuradio.

Not only did we have great progressions from old dependencies that proved to be all too problematic (SWIG, Python2), but also did we see an incredibly influx of people actively working on how maintainable this code base is. This will nurture the project for years to come.

All in all, the main breaking change for pure GRC users will consist in a few changed blocks – an incredible feat, considering the amount of shift under the hood.

Hacking a Ceiling Fan Radio Control Signal with an RTL-SDR

Over on YouTube "River's Educational Channel" has uploaded a video showing how he was able to reverse engineer the wireless control signal from his ceiling fan remote, and use that information to create a new transmitter controlled via his smart home's Raspberry Pi.

In the video River uses an RTL-SDR and the Spektrum software to initially identify the remotes frequency, before moving on to record the signal in Universal Radio Hacker (URH). He then goes on to reverse engineer the signal and determine the binary control string for each button on the ceiling fan's remote control.

In part 2 which is yet to be released River will show how to transmit this signal via his Raspberry Pi 3B in order to integrate it with his smart home.

Hacking My Ceiling Fan Radio Signal With a $15 USB TV Tuner (RTL2832U)