Tagged: rtl2832

WebWSPR: A Browser Based WSPR Decoder and Visualization Tool

A few days ago we posted about [dj0abr / Radio Electronics'] WebSDR software for QO-100. Having looked through his GitHub we've seen that he also has an a similar browser based server tool called WebWSPR for WSPR decoding and visualization (click with WebWSPR link) which was released earlier this year.

WSPR is an amateur radio digital HF mode designed to be decodable even if the signal is transmitted with very low power and is very weak. It can be used to help determine HF radio propagation conditions as WSPR reception reports are typically automatically uploaded to wsprnet. In the past we have been able to receive WSPR and similar modes like FT8 with our RTL-SDR V3 running in direct sampling mode.

Like his QO-100 WebSDR software, WebWSPR is designed to run on a single board computer like a Raspberry Pi or any Linux machine. It serves a web page that shows the WSPR waterfall, decoded data and has various WSPR related control options. The web page can be accessed remotely from any machine on the same network as the server, or could be put on the internet with port forwarding and a hostname service like noip.

A ready to use Raspberry Pi image for WebWSPR is available here (does not seem to support the latest Pi4 or 3B+ however). Manual installation instructions can be found here. The code is all open source and available on GitHub.

The software appears to take input from the soundcard for standard hardware receivers, but it should be possible to pipe audio from an RTL-SDR into pulseaudio, which the software can then use. The instructions from our RTL-SDR V3 WSJT-X tutorial may help.

WebWSPR Browser Screenshot
WebWSPR Browser Screenshot

Hackaday Article about the Slow Death of NOAA-15

If you've been following our blog, or have your own RTL-SDR based weather satellite station, then you'll know that the NOAA-15 APT satellite has been experiencing issues lately. There appear to be problems with it's camera scan motor resulting from it running low on lubrication. This is fully understandable as the satellite is 21 years old and well past it's expected life span. The satellite appears to be working some days, and producing garbage image other days.

Over on Hackaday, Dan Maloney has uploaded an interesting article that explores the history and technology behind NOAA-15's camera, and why it is now failing.

When NOAA-15 fails for good, don't feel too bad as we still have NOAA-18 and NOAA-19, the Russian Meteor M2, and Meteor M2-2 satellites, and the GOES satellites, all of which can be received by an RTL-SDR. Several new weather satellites are also planned for 2020 and onwards.

Talks from GNU Radio Days 2019

GNU Radio Days 2019 was a workshop held back in June. Within the last week recordings of the talks have been uploaded to YouTube by the Software Defined Radio Academy channel. The talks cover a wide range of cutting edge SDR research topics and projects. Many of the presenters have also made use of RTL-SDR dongles, as well as other higher end SDRs in their research.

All the talks are combined into two 3 hour long videos from the morning and day sessions from day one. Day two also has two videos that consist of recordings from the tutorial sessions which make use of the PlutoSDR. Finally there is also the keynote speech from Marcus Müller where he dives into the internal workings of GNU Radio.

Below we list the talks with timestamps for the YouTube video. Short text abstracts for each of the talks can also be found in the conference book. We note that not all the abstracts appear to have been presented in the videos, so it may be worth checking out the book for missed talks about passive radar, a 60 GHz link, embedded GNU Radio on a PlutoSDR, an SDR 802.11 infrared transmission system, PHY-MAC layer prototyping in dense IoT networks and hacking the DSMx Drone RC protocol.

Continue reading

Android ADS-B Flight Tracker with 3D Aircraft Display

ADSB Flight Tracker is an Android App that allows you to display ADS-B flight data in either 2D or 3D. It works either with data shared from others over the internet via aggregation sites like adsbexchange.com, or via your own home ADS-B receiver data coming from an RTL-SDR and dump1090 server on your home network. You can also directly connect to an RTL-SDR that is running on your phone and this will allow you to get data faster with less lag. Using data shared by others from the internet could have a delay of a few seconds.

In order to keep using the 3D and RTL-SDR features you'll need to unlock them for a small in-app purchase of $2 for each feature. Initially you get about 30 minutes trial time however.

2D and 3D Screenshots from ADS-B Flight Tracker
2D and 3D Screenshots from ADS-B Flight Tracker

Some interesting 3D videos were also recently posted to the apps Twitter page @ADSBFlightTrkr

SDRTrunk 0.4.0 Alpha 9 Updates Highlighted

You may recall that a few years ago we released a tutorial on how to set up and use [SDRTrunk]. Fast forward a few years and the software has seen numerous changes. This application was designed primarily for tracking trunking radio systems but also has the ability to decode things like MDC-1200, LoJack and more.

The software is compatible with many Software Defined Radios such as our RTL-SDR v3, HackRF and the Airspy. Some of the newer improvements include a bundled copy of java so that an installation of java is not required on the host computer, as well as decoding improvements for P25 among other digital voice modes. You can find a full list of improvements along with the latest release on [GitHub]

The biggest feature many have been waiting for is the ability to import talk groups for their radio system into the application from radio reference. While this has not yet been implemented, user [Twilliamson3] has created a [web application] that will convert table data from radio reference into a format that is supported by SDRTrunk.

SDRTrunk Screenshot
SDRTrunk Screenshot

SignalsEverywhere 10,000 Subscriber Interactive Live Stream with Giveaways on August 10 12PM EST

The SignalsEverywhere YouTube channel is quickly growing in size, and has recently passed the 10,000 subscriber milestone. If you weren't aware, Corrosive (aka KR0SIV aka Harold) who runs the channel has been consistently putting out high quality videos related to the software defined radio hobby. He's also started a podcast which also covers some interesting topics.

Some Recent SignalsEverywhere YouTube Videos
Some Recent SignalsEverywhere YouTube Videos

To celebrate hitting the 10,000 subscriber mark, Harold is planning an interactive 6 hour+ YouTube live stream which will begin on Saturday August 10 12PM EST time (11 hours from the time of this post)If you want to be automatically reminded of the stream, go to the live stream place holder, and click on set reminder.

The stream will be interactive as he is planning on setting up several SpyServer's that will be running across the HF, VHF, UHF and L-Bands. This will allow the audience to use SDR# to connect to his SDRs that are being used on the stream, allowing people to follow along with what Harold is doing on the stream, and ask questions about what they are seeing.

We're also helping to sponsor his stream and will be donating 5x RTL-SDR dongle + antenna kits, 5x RTL-SDR dongles, 1x Radarbox bundle, as well as one KerberosSDR to any giveaways that he plans on doing throughout the stream.

We really like Harolds work on YouTube, and if you are a fan of the content on our RTL-SDR.COM blog, then you really should be subscribed to his channel too.

mySdrPlayback: MacOS Software for Browsing Through IQ Recordings from SDR#, SDRUno and More

mySdrPlayback is a program for MacOS that allows you to easily browse through IQ recordings created from multiple SDR programs. Recently the software's author (@ChrisSmolinski) 
Tweeted that he's added support for SDR# and SDRUno IQ recordings
. The program is described below:

Why use this app? It makes it easy to slog through lots of recording files, looking for interesting signals. Load a file, and a waterfall for the entire file is created. You can scroll around, and if you see anything that looks interesting, you can drag select it, and then demodulate it. You can even save the demodulated audio as a WAVE file, that you can listen to later, send to someone else, or play into your digital decoding software, if it is an RTTY, SSTV, etc. transmission.

Support for other SDR recording file formats is possible, you'll need to work with me by providing sample files and details on the format. This program is presently for macOS only. Support for Windows may happen... stay tuned!

mySdrPlayback now supports SDR# and SDRUno IQ Files.
mySdrPlayback now supports SDR# and SDRUno IQ Files.

New LNA + Filter for Radio Astronomy Hydrogen Line Observations Released by NooElec

NooElec have recently released a new LNA + filter combo called the "SAWbird+ H1 Barebones" which significantly lowers the entry bar for new amateur radio astronomers. It's designed to be used with RTL-SDR or other SDRs for radio astronomy, and in particular reception of the Hydrogen line.

The filter is centered at 1.42 GHz with a 70 MHz bandpass region. The LNA has a minimum gain of 40dB. For hydrogen line observations it is important that the LNA have very low noise figure, and this LNA fits the bill with a ~0.5dB to ~0.6dB noise figure. An additional feature on the PCB is an RF switch that is electrically controlled via expansion headers. This switch allows you to switch out the LNA for a 50 Ohm reference which is useful for calibration in more serious radio astronomy work.

This LNA draws 120mA of current meaning that it will work with the RTL-SDR V3 and Airspy's bias tee, but probably not with the SDRplay's bias tee which is limited to 100mA and seems to trip a fuse at higher current draws. For an SDRplay you could use external power instead, although you will need an additional DC blocking cap to prevent power from entering the SDR and destroying the ESD diodes.

If you don't know what the Hydrogen line is, we'll explain it here. Hydrogen atoms randomly emit photons at a wavelength of 21cm (1420.4058 MHz). Normally a single hydrogen atom will only very rarely emit a photon, but space and the galaxy is filled with many hydrogen atoms so the average effect is an observable RF power spike at 1420.4058 MHz. By pointing a radio telescope at the night sky and integrating the RF power over time, a power spike indicating the hydrogen line can be observed in a frequency spectrum plot. This can be used for some interesting experiments, for example you could measure the size and shape of our galaxy. Thicker areas of the galaxy will have more hydrogen and thus a larger spike. You can also measure the rotational speed of our galaxy by noting the frequency doppler shift.

Although this LNA lowers the entry bar, in order to receive the Hydrogen line with the SAWBird+ H1 you will still need a ~1m+ satellite dish and a feed tuned to 1.42 GHz or high gain Yagi, horn or helical antenna. Antennas and feeds like this are not yet available off the shelf, but if you search our blog for "hydrogen line" you'll see many project examples

The NooElec SAWBird+ H1. For Hydrogen Line Observations.
The NooElec SAWBird+ H1. For Hydrogen Line Observations.