Tagged: satellite

Elektro-L3 Geostationary Weather Satellite: Easy to Receive LRIT Signal Being Tested

Back in September 2020 we posted about the release of an X-Band decoder for the Elektro-L2 and Elektro-L3 Russian geostationary satellites. These satellites are receivable from Europe, the Middle East, Asia, Africa, South America and Australia. Unlike the HRIT and LRIT L-band transmissions from other geosynchronous satellites like GOES and GK-2A, the X-band Elektro signal is quite difficult to receive, requiring a large dish and more expensive hardware.

However we've recently seen exciting news on Twitter that a new L-band LRIT transmission has been activated on Elektro-L3. Like the Korean GK-2A satellite, this L-band LRIT transmission at 1691 MHz should be much easier to receive requiring only a WiFi dish, SAWBird GOES LNA and an RTL-SDR. We haven't yet confirmed if like GK-2A, the smaller 600 x 400 mm WiFi dish is sufficient, or if Elektro requires the larger 600 x 1000 mm dish size. (See our GOES satellite and GK-2A tutorial for information about the hardware being discussed in this paragraph.)

We note that the Elektro-L3 signal appears to be in testing, and the transmission could be turned on and off, or even turned off permanently. The transmission schedule is also not yet clear although in this recent tweet @HRPTEgor has mapped out some current transmission times for Eletro-L3.

It is hoped that LRIT will also eventually be activated on Elektro-L2, and perhaps even HRIT will be activated too. It is also exciting that more Elektro-L satellites are planned to be launched from 2022 onwards and we expect those to have hopefully LRIT and HRIT transmissions as well. To add further excitement, it is hoped that the L3 LRIT activation means that a LRIT or HRIT signal will be activated on the high elliptical orbit (HEO) northern hemisphere Arctic monitoring ARKTIKA-M1 satellite launched in Feb 2021, as this satellite is derived from the Elektro-L design.

The LRIT activation of Elektro-L3 hopefully means that Europeans should finally have access to a geostationary weather satellite that can be easily received with modest low cost hardware. The current coverage map from Orbitron of the two Elektro satellites is shown below (note that Elektro-L2 LRIT does not appear to have been activated yet).

Elektro-L2 and Elektro-L3 Coverage (Currently only Elektro-L3 LRIT transmissions have been discovered)

Over on Twitter @aang254 has noted that he has already updated his satdump software, adding support for Elektro LRIT decoding, and adding support for all of the available channels and for color. Satdump is available as a binary for Windows, and on Linux can be built from source. Experimentally, Satdump can also be built and run on Android.

The Tweet from @aang254 provides a nice sample image of what can be received.

Using an RTL-SDR Dongle to Receive Pictures from the ISS

Over on YouTube we've seen a good video from channel Ham Radio DX where presenter Hayden shows how to use an RTL-SDR to receive slow scan television (SSTV) images from the International Space Station (ISS). Often the ISS will transmit SSTV images down to earth on the VHF 2 meter bands as part of an event. With an RTL-SDR and simple antenna it's possible to receive those images.

In the video Hayden discusses the SSTV transmission, and demonstrates some SSTV decoding happening in real time as the ISS passes over his location. If you're looking to get started in ISS SSTV reception, this is a good video to get an idea of what's involved. He finishes the video with some useful tips for reception.

Using a RTL SDR Dongle to receive pictures from the ISS! | Software Defined Radio

Frugal Radio: How To Decode L band Satellite ACARS and CPDLC messages with JAERO and your SDR

In the latest episode of his YouTube series on Aviation monitoring Rob explores how to decode L-band satellite ACARS (Aircraft Communication Addressing and Reporting System) and CPDLC (Controller Pilot Data Link Communications) messages using JAERO, an SDR like an RTL-SDR, and a appropriate L-band antenna such as our RTL-SDR Blog Active L-Band Patch (currently out of stock).

In the video Rob shows examples of what you might receive such as CPDLC ATC instructions, digital ATIS information, arrival information and suggested landing data configuration instructions. He goes on to show satellite coverage maps, what hardware is required to receive these signals, and finally how to setup the receiving and decoding software.

How To Decode L band Satellite ACARS and CPDLC messages with JAERO and your SDR

Decoding NOAA on an Debian Chrooted Android Smartphone

Over on Reddit Ian Grody (u/DutchOfBurdock) has posted about his success in using a modded Android smartphone to run an RTL-SDR Blog V3 and NOAA decoder software all within the phone itself.

In the past we posted about Ian's work in getting rtl_power scans to work in conjunction with the Tasker app, in order to generate automated frequency scans on his phone on the go. His more recent work from the past year includes showing us how it's possible to install Debian chroot on an Android phone, and run Linux software like GQRX, GNU Radio, DSD, rtl_433, multimon-ng and dump1090 directly on the phone with an RTL-SDR.

His latest Reddit post shows that the NOAA-APT decoder also runs well on the Debian chroot, leading to a truly portable NOAA decoding setup. He notes that he is now working on the possibility of Meteor M2 decoding on the phone.

Below is his video from last year demonstrating SDR GQRX and GNU Radio running on the Debain chrooted phone.

GQRX, GNU Radio, Rooted Android

Building an Automated NOAA and Meteor Weather Satellite Image Collector with RTL-SDR

Over on his YouTube channel saveitforparts has uploaded a video showing how he has built an automated weather satellite image collector for the NOAA APT and Meteor M2 LRPT satellites. The video shows a time lapse of him building a QFH antenna, and how he's mounted a Raspberry Pi and RTL-SDR inside a waterproof enclosure attached to the antenna mast. He goes on to show how he's automating the system with the Raspberry-NOAA V2 software

Automated Home Weather Station (Satellite Image Collector)

Two reviews of our new L-Band Patch Antenna + Stock Update

Last month we released our new L-band active patch antenna for sale, and not too long after we had a review from Frugal Radio praising it. We now have two more YouTube reviews available to share.

The first is from Tech Minds who does a teardown and demonstrates it receiving and decoding the Inmarsat STD-C NCS channel, receiving and decoding GPS and receiving Iridium signals. The second is from Mike Ladd from SDRplay, who tests it with an SDRplay RSP1A software defined radio. He shows that the patch works perfectly with an RSP1A, and demonstrates it receiving and decoding STD-C while mounted on the dash of his vehicle.

L-Band Patch Stock Availability Note: We note that we are already close to selling out of the first batch of these units as they sold much faster than expected! New sales of this patch are currently backordered but we expect to have a few more units from this first batch available by the end of next week. Also the freighter with Amazon USA stock should be arriving any day now, but it could still take a few weeks to get through the port and reach the warehouse due to the current port delays.

The second production batch of this antenna might still be a while away due to the electronic component shortage crisis occurring now, so if you were thinking about picking one up, please order ASAP.

RTL-SDR BLOG L-BAND Patch Antenna Version 2 - Inmarsat - Iridium - GPS

SDRplay RSP1a - RTL SDR Blog L-Band Patch antenna

NOAA-2 Returns from the Dead

Satellites can stay in orbit for years after their decommissioning date. Although they are turned off, often after many years they can turn on again as the battery chemicals begin to break down, eventually allowing electricity directly to the satellite systems whenever the solar panels are in light. We've seen this phenomenon occur with various decommissioned satellites.

Recently it was discovered by amateur radio satellite watcher Scott Tilley that NOAA-2 appears to be actively transmitting again in the L-band at 1697.5 MHz. NOAA-2 is a weather image satellite that was operational from 1972 - 1975.

Next over on his blog Derek OK9SGC was able to confirm reception of the signal, make a recording, and then with the help of @Xerbo10 discovered that you can actually receive an image from it. However as is to be expected the camera is not actually operational and all you get is a few grey lines indicating voltage calibration and sync telemetry.

It's unknown how long the satellite will stay undead, but if you manage to receive it let us know in the comments.

NOAA-2 Revival Signal and APT Image

Building a GOES-16 Antenna out of Trash, Cardboard and Foil Tape

Over on his YouTube channel saveitforparts has uploaded a video showing how he was able to modify and old DirectTV satellite dish found in the dumpster with cardboard and foil in order to receive images from the GOES-16 geostationary weather satellite.

I wanted to download images from the GOES-16 weather satellite, but didn't have a big enough satellite dish. So I made one out of an old TV dish, cardboard, and aluminum tape! Amazingly this actually works, and I was able to pull live pictures of the earth off the satellite in geostationary orbit! The cardboard won't last long-term, so I'm looking for an antique C-band dish that I can set up as a more permanent solution. However, for a cheap and expedient ground station, this worked pretty well!

Satellite Ground Station With Trash, Cardboard, and Foil Tape!